Skip to main content

Visualization of Exosome Release and Uptake During Cell Migration Using the Live Imaging Reporter pHluorin_M153R-CD63

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

Abstract

Exosome secretion and uptake regulate cell migration through autocrine and paracrine mechanisms. Monitoring exosome secretion and uptake during cell migration is critical for investigation of these mechanisms. Exosomes can be visualized by direct labeling with fluorescent dyes or by tagging intrinsic markers with fluorescent proteins for live imaging. Due to several limitations of fluorescent dye-labeled exosomes, we created two bright genetically encoded reporters of exosome secretion, pHluorin_M153R-CD63 and pHluorin_M153R-CD63-mScarlet. Here, we describe how to visualize secretion and uptake of exosomes labeled with these pH-sensitive and pH-insensitive fluorescent protein-tagged exosomal markers during cell migration using time-lapse fluorescent microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rørth P (2009) Collective cell migration. Annu Rev Cell Dev Biol 25:407–429. https://doi.org/10.1146/annurev.cellbio.042308.113231

    Article  CAS  Google Scholar 

  2. Yamada KM, Sixt M (2019) Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 20(12):738–752. https://doi.org/10.1038/s41580-019-0172-9

    Article  CAS  Google Scholar 

  3. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. https://doi.org/10.1038/nrm2720

    Article  CAS  Google Scholar 

  4. Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17(2):97–109. https://doi.org/10.1038/nrm.2015.14

    Article  CAS  Google Scholar 

  5. Norden C, Lecaudey V (2019) Collective cell migration: general themes and new paradigms. Curr Opin Genet Dev 57:54–60. https://doi.org/10.1016/j.gde.2019.06.013

    Article  CAS  Google Scholar 

  6. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704. https://doi.org/10.1126/science.1092053

    Article  CAS  Google Scholar 

  7. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32. https://doi.org/10.1016/j.ydbio.2003.06.003

    Article  CAS  Google Scholar 

  8. Lämmermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644. https://doi.org/10.1016/j.ceb.2009.05.003

    Article  CAS  Google Scholar 

  9. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  Google Scholar 

  10. Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA (2008) Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J Cell Biol 183(5):949–961. https://doi.org/10.1083/jcb.200808105

    Article  CAS  Google Scholar 

  11. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232. https://doi.org/10.1083/jcb.200911018

    Article  CAS  Google Scholar 

  12. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30. https://doi.org/10.1038/ncb2000

    Article  CAS  Google Scholar 

  13. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214(2):197–213. https://doi.org/10.1083/jcb.201601025

    Article  CAS  Google Scholar 

  14. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14(10):1036–1045. https://doi.org/10.1038/ncb2574

    Article  CAS  Google Scholar 

  15. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5(5):1159–1168. https://doi.org/10.1016/j.celrep.2013.10.050

    Article  CAS  Google Scholar 

  16. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG (2015) RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol 211(1):27–37

    Article  CAS  Google Scholar 

  17. Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V (2012) Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 287(20):16820–16834. https://doi.org/10.1074/jbc.M112.342667

    Article  CAS  Google Scholar 

  18. Messenger SW, Woo SS, Sun Z, Martin TFJ (2018) A Ca(2+)-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol 217(8):2877–2890. https://doi.org/10.1083/jcb.201710132

    Article  CAS  Google Scholar 

  19. Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, Li M, Shi L, Pan C, Zhu D (2017) Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun 8(1):1–12

    Article  Google Scholar 

  20. Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:7164. https://doi.org/10.1038/ncomms8164

    Article  CAS  Google Scholar 

  21. Sung BH, Weaver AM (2017) Exosome secretion promotes chemotaxis of cancer cells. Cell Adhes Migr 11(2):187–195. https://doi.org/10.1080/19336918.2016.1273307

    Article  CAS  Google Scholar 

  22. Kriebel PW, Majumdar R, Jenkins LM, Senoo H, Wang W, Ammu S, Chen S, Narayan K, Iijima M, Parent CA (2018) Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol 217(8):2891–2910. https://doi.org/10.1083/jcb.201710170

    Article  CAS  Google Scholar 

  23. Sung BH, von Lersner A, Guerrero J, Krystofiak ES, Inman D, Pelletier R, Zijlstra A, Ponik SM, Weaver AM (2020) A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat Commun 11(1):2092. https://doi.org/10.1038/s41467-020-15747-2

    Article  CAS  Google Scholar 

  24. Sung BH, Parent CA, Weaver AM (2021) Extracellular vesicles: critical players during cell migration. Dev Cell 56(13):1861–1874. https://doi.org/10.1016/j.devcel.2021.03.020

    Article  CAS  Google Scholar 

  25. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 6(9):e24234. https://doi.org/10.1371/journal.pone.0024234

    Article  CAS  Google Scholar 

  26. Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, Sullivan MLG, Gibson GA, Watkins SC, Larregina AT, Morelli AE (2016) Donor dendritic cell–derived exosomes promote allograft-targeting immune response. J Clin Invest 126(8):2805–2820. https://doi.org/10.1172/JCI84577

    Article  Google Scholar 

  27. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. https://doi.org/10.1038/28190

    Article  Google Scholar 

  28. Verweij FJ, Bebelman MP, Jimenez CR, Garcia-Vallejo JJ, Janssen H, Neefjes J, Knol JC, de Goeij-de HR, Piersma SR, Baglio SR, Verhage M, Middeldorp JM, Zomer A, van Rheenen J, Coppolino MG, Hurbain I, Raposo G, Smit MJ, Toonen RFG, van Niel G, Pegtel DM (2018) Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol 217(3):1129–1142. https://doi.org/10.1083/jcb.201703206

    Article  CAS  Google Scholar 

  29. Morimoto YV, Kojima S, Namba K, Minamino T (2011) M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins. PLoS One 6(5):e19598. https://doi.org/10.1371/journal.pone.0019598

    Article  CAS  Google Scholar 

  30. Mori Y, Yoshida Y, Satoh A, Moriya H (2020) Development of an experimental method of systematically estimating protein expression limits in HEK293 cells. Sci Rep 10(1):4798. https://doi.org/10.1038/s41598-020-61646-3

    Article  CAS  Google Scholar 

  31. Geertsma ER, Groeneveld M, Slotboom D-J, Poolman B (2008) Quality control of overexpressed membrane proteins. Proc Natl Acad Sci 105(15):5722. https://doi.org/10.1073/pnas.0802190105

    Article  Google Scholar 

  32. Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff-Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SEL, Wood MJ, Meisner-Kober NC (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213(2):173–184. https://doi.org/10.1083/jcb.201506084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01CA206458, R01CA249684, and R01CA249424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong H. Sung .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

A migrating HT1080 cell stably expressing pHluorin_M153R-CD63. Time-series images were taken on a fibronectin-coated glass-bottom dish (1 μg/mL) every 30 s. (The movie was rotated by 180° and reproduced under the term of the Creative Commons CC BY 4.0 license [23]. Copyright © 2020, Springer Nature (MP4 11222 kb))

Endocytosis and acidification of extracellular exosome deposits. Live confocal microscopy of pHluorin_M153R-CD63-mScarlet on a fibronectin-coated glass-bottom dish (1 μg/mL) with images taken every minute. Exosome deposits (white arrows) contacted by cells are endocytosed and acidified in endosomal compartments (magenta arrows). (Reproduced under the term of the Creative Commons CC BY 4.0 license [23]. Copyright © 2020, Springer Nature (MP4 2391 kb))

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sung, B.H., Weaver, A.M. (2023). Visualization of Exosome Release and Uptake During Cell Migration Using the Live Imaging Reporter pHluorin_M153R-CD63. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics