Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells

Nat Commun. 2022 Dec 24;13(1):7933. doi: 10.1038/s41467-022-35504-x.

Abstract

Genome architecture and organization play critical roles in cell life. However, it remains largely unknown how genomic loci are dynamically coordinated to regulate gene expression and determine cell fate at the single cell level. We have developed an inducible system which allows Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies (SIMBA) in living cells. In SIMBA, the human heterochromatin protein 1α (HP1α) is fused to mCherry and FRB, which can be induced to form biomolecular assemblies (BAs) with FKBP-scFv, guided to specific genomic loci by a nuclease-defective Cas9 (dCas9) or a transcriptional factor (TF) carrying tandem repeats of SunTag. The induced BAs can not only enhance the imaging signals at target genomic loci using a single sgRNA, either at repetitive or non-repetitive sequences, but also recruit epigenetic modulators such as histone methyltransferase SUV39H1 to locally repress transcription. As such, SIMBA can be applied to simultaneously visualize and manipulate, in principle, any genomic locus with controllable timing in living cells.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • CRISPR-Associated Protein 9 / genetics
  • CRISPR-Cas Systems
  • Genetic Loci*
  • Genome, Human*
  • Humans
  • Molecular Imaging*
  • Transcription Factors / genetics

Substances

  • CRISPR-Associated Protein 9
  • Transcription Factors