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Abstract

Rare diseases (RDs) are collectively common and affect 300 million people worldwide.
Accurate phenotyping is critical for informing diagnosis and treatment, but RD phenotypes
are often embedded in unstructured text and time-consuming to extract manually. While
natural language processing (NLP) models can perform named entity recognition (NER) to
automate extraction, a major bottleneck is the development of a large, annotated corpus
for model training. Recently, prompt learning emerged as an NLP paradigm that can
lead to more generalizable results without any (zero-shot) or few labeled samples (few-
shot). Despite growing interest in ChatGPT, a revolutionary large language model capable
of following complex human prompts and generating high-quality responses, none have
studied its NER performance for RDs in the zero- and few-shot settings. To this end,
we engineered novel prompts aimed at extracting RD phenotypes and, to the best of our
knowledge, are the first the establish a benchmark for evaluating ChatGPT’s performance
in these settings. We compared its performance to the traditional fine-tuning approach
and conducted an in-depth error analysis. Overall, fine-tuning BioClinicalBERT resulted
in higher performance (F1 of 0.689) than ChatGPT (F1 of 0.472 and 0.591 in the zero-
and few-shot settings, respectively). Despite this, ChatGPT achieved similar or higher
accuracy for certain entities (i.e., rare diseases and signs) in the one-shot setting (F1 of
0.776 and 0.725). This suggests that with appropriate prompt engineering, ChatGPT has
the potential to match or outperform fine-tuned language models for certain entity types
with just one labeled sample. While the proliferation of large language models may provide
opportunities for supporting RD diagnosis and treatment, researchers and clinicians should
critically evaluate model outputs and be well-informed of their limitations.
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*Corresponding author. Post Address: 2525 West End Avenue, Nashville, TN, 37203

1

ar
X

iv
:2

30
6.

12
65

6v
1 

 [
cs

.C
L

] 
 2

2 
Ju

n 
20

23



1. Introduction

Rare diseases are chronically debilitating, often life-limiting conditions that affect 300 mil-
lion individuals worldwide (Nguengang Wakap et al., 2020). Though individually rare (de-
fined as affecting < 200, 000 individuals in the United States), rare diseases are collectively
common and represent a serious public health concern (Chung et al., 2022). Because of
the lack of knowledge and effective treatment options for rare diseases, patients undergo
diagnostic and therapeutic odysseys, where they are diagnosed with delay and face diffi-
culty searching for effective therapies (Childerhose et al., 2021; Insights, 2020). Rare disease
odysseys have devastating medical, psychosocial, and economic consequences for patients
and families, resulting in irreversible disease progression, physical suffering, emotional tur-
moil, and ongoing high medical costs (Cohen and Biesecker, 2010; Carmichael et al., 2015;
Yang et al., 2022). Thus, there is an urgent need to shorten rare disease odysseys, and
reaching this goal requires effective diagnostic and treatment strategies.

Phenotyping is crucial for informing both strategies. Ongoing initiatives like the Na-
tional Institutes of Health’s Undiagnosed Diseases Network rely on deep phenotyping to
generate candidate diseases for diagnosis, identify additional patients with similar clini-
cal manifestations, and personalize treatment or disease management strategies (Tifft and
Adams, 2014; Macnamara et al., 2019). In addition, phenotyping can facilitate cohort iden-
tification and recruitment for clinical trials critical to the development of novel treatment
regimes (Ahmad et al., 2020; Chapman et al., 2021). Because of scarce nosological guide-
lines, however, rare diseases and their associated phenotypes are seldom represented in
international classifications as structured data (Rath et al., 2012). Instead, they are often
embedded in unstructured text and require manual extraction by highly trained experts,
which is laborious, costly, and susceptible to bias depending on the clinician’s background
and training. A promising alternative is to leverage natural language processing (NLP)
models, which can automatically identify and extract rare disease entities, reduce manual
workload, and improve phenotyping efficiency.

Automatic recognition of disease entities, or named entity recognition (NER), is an
NLP task that involves the identification and categorization of disease information from
unstructured text. This task is especially challenging due to the diversity, complexity, and
ambiguity of rare diseases and their phenotypes, which can have different synonyms (e.g.,
cystic fibrosis and mucoviscidosis), abbreviations (e.g., CF for cystic fibrosis), and modifiers
such as body location (e.g., small holes in front of the ear) and severity (e.g., extreme
nearsightedness). Descriptions of rare disease phenotypes that are discontinuous, nested,
or overlapping present additional challenges; moreover, those that range from short phrases
in layman’s terms (e.g., distention of the kidney) to medical jargon (e.g., hydronephrosis)
may further complicate NER.

Over the last few decades, rapid evolution of NLP models led to significant advancements
in NER. Early approaches relied on rules derived from extensive manual analysis (Wang
et al., 2018); these were later superseded by sequence labeling models, including conditional
random fields and recurrent neural networks, that capture contextual information between
adjacent words (Li et al., 2015; Patil et al., 2020). Over the last several years, the NER
paradigm shifted toward transformer-based language models like BERT (Bidirectional En-
coder Representations from Transformers), which achieved state-of-the-art performance on
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benchmark datasets (Vaswani et al., 2017; Devlin et al., 2018). Despite their success, a
major bottleneck of training models for rare diseases or biomedical applications in general
is the development of large, annotated corpora, which is a laborious process that requires
manual annotation by domain experts. Recently, OpenAI released ChatGPT, a revolution-
ary, GPT-based (Generative Pre-trained Transformer) language model capable of following
complex human prompts and generating high-quality responses without any annotated data
(zero-shot) or with just a few examples (few-shot) (OpenAI, 2022; Agrawal et al., 2022; Hu
et al., 2023; Chen et al., 2023). This capability, which provides opportunities to signifi-
cantly reduce the manual burden of annotation without sacrificing model performance, is
especially attractive for NER in the context of rare diseases.

Despite the proliferation of studies on biomedical NER, few have explored this topic
for rare diseases. Davis et al. (2013) and Lo Barco et al. (2021) developed NLP algorithms
using the Unified Medical Language System Metathesaurus to recognize phenotypes for mul-
tiple sclerosis and Dravet syndrome, respectively. Nigwekar et al. (2014) used an unnamed
NLP software to identify patients with the terms “calciphylaxis” or “calcific uremic arte-
riolopathy” in their medical records. Recently, Fabregat et al. (2018) and Segura-Bedmar
et al. (2022) leveraged deep learning techniques, including Bidirectional Long Short Term
Memory networks and BERT-based models, to recognize rare diseases and their clinical
manifestations from texts. While some explored the potential of ChatGPT for diagnosing
rare diseases with human-provided suggestions (Lee et al., 2023; Mehnen et al., 2023), none
have studied its performance for NER in the zero- or few-shot settings.

To this end, our study makes the following contributions. 1) We designed new prompts
for ChatGPT to extract rare diseases and their phenotypes (i.e., diseases, symptoms, and
signs) in the zero- and few-shot settings. 2) To the best of our knowledge, this work is the
first to establish a benchmark for evaluating ChatGPT’s NER performance on a high-quality
corpus of annotated texts on rare diseases (Mart́ınez-deMiguel et al., 2022). In addition,
we compared prompt learning to fine-tuning by training and evaluating a domain-specific
BERT-based model on the annotated corpus. 3) We conducted an in-depth error analysis
to elucidate the models’ performance and 4) provided suggestions to help guide future work
on NER for rare diseases.

2. Methods

2.1 Dataset

We used the RareDis corpus, which consists of n = 832 texts from the National Organization
for Rare Disorders database (Mart́ınez-deMiguel et al., 2022). This corpus was annotated
with four entities, rare diseases, diseases, signs, and symptoms, with an inter-annotator
agreement of 83.5% under exact match. Table 1 provides the entity definitions. Unlike
corpora with distinct entity types, e.g., {person, location, organization} or {problem, test,
treatment}, RareDis consists of entities with considerable semantic overlap. Specifically,
rare diseases are a subset of diseases. Diseases can cause or be associated with other diseases
as a symptom or sign. The distinction between symptoms and signs is very subtle; while
both are abnormalities that may indicate a disease, the former are subjective to the patient
and cannot be measured by tests or observed by physicians (e.g., pain or loss of appetite).
On the other hand, a sign can be measured or observed (e.g., high blood pressure, poor lung
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Entity Definition Examples

Rare disease Diseases which affect a small number of people cat eye syndrome,
compared to the general population Marfan syndrome

Disease An abnormal condition of a part, organ, or system cancer, cardiovascular disease
of an organism resulting from various causes, such
as infection, inflammation, environmental factors,
or genetic defect, and characterized by an identifiable
group of signs, symptoms, or both

Symptom A physical or mental problem that may indicate fatigue, pain
a disease or condition; cannot be seen and do not
show up on medical tests

Sign A physical or mental problem that may indicate rash, abnormal heart rate
a disease or condition; can be seen and shows up
on medical tests

Table 1: Summary of entity definitions.

function). Across n = 832 texts, there were a total of 7,354 sentences, 4,065 rare diseases,
1,814 diseases, 316 symptoms, and 3,317 signs. Rare diseases and signs were more common
than diseases and symptoms, accounting for 77% of all entities in the corpus. Fig. 1 provides
a summary of counts per text.

Figure 1: Number of sentences and entities per docu-
ment.

The RareDis corpus is publicly
available and distributed in the
Brat standoff format (Stenetorp
et al., 2012). We refer read-
ers to Mart́ınez-deMiguel et al.
(2022) for details on the annota-
tion guidelines.

2.2 NER
Paradigms and Models

We considered two popular NER
paradigms for comparison: 1) pre-
training + fine-tuning, and 2)
prompt learning (Radford et al.,
2018; Liu et al., 2023). The former involves a two-step process where a language model
(e.g., BERT) is first trained on a massive amount of unlabeled text data and then fine-
tuned on specific downstream NER tasks with labeled data. In the case of BERT models,
the objective is to learn general language presentations through masked language modeling
during the pre-training phase, where BERT learns to predict masked portions of the input
based on surrounding text. During the fine-tuning phase, the model is further trained using
labeled data from the target task, and its parameters are jointly fine-tuned via supervised
learning, allowing BERT to adapt its predictions to the specific task at hand.

In contrast, prompt learning is a more recent paradigm that reformulates the NER task
as textual prompts so that the model itself learns to predict the desired output. Prompt
learning has been shown to have better generalizability for unseen data with few or even
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no labeled samples (Agrawal et al., 2022). This is especially attractive for biomedical
applications where annotations often require domain expertise and are not widely accessible
due to data privacy. We compared BERT- and GPT-based models within the fine-tuning
and prompt learning paradigms, respectively, due to their promising empirical performance
on NER tasks in the biomedical domain (Yan et al., 2021; Chen et al., 2021, 2023).

2.2.1 Data Pre-processing and Fine-tuning BioClinicalBERT

To pre-process our data, we split the texts into individual words (or subwords) with the
BERT tokenizer and added special tokens (i.e., CLS and SEP) to the beginning and end
of each tokenized sequence, respectively. We converted the tokens to their respective IDs,
padded (or truncated) text sequences to obtain fixed-length inputs, and created an attention
mask to distinguish between actual and padding tokens. Last, we mapped our labels, {rare
disease, disease, symptom, sign}, to corresponding numerical values.

We partitioned the data into a training, validation, and test set based on an 8:1:1 ratio.
For the base architecture, we selected BioClinicalBERT (Alsentzer et al., 2019), a variant
of BERT that was pre-trained on large-scale biomedical (PubMed, ClinicalTrials.gov) and
clinical corpora (MIMIC-III (Johnson et al., 2016)). To fine-tune BioClinicalBERT on our
corpus, we trained the model on the training set and selected hyperparameters using the
validation set. We used the test set to evaluate model performance.

2.2.2 Prompt Learning using ChatGPT (GPT-3.5-turbo)

In this section, we describe our approach to reformulating NER as a text generation task
in the zero- and few-shot settings. The former refers to instructing the model to extract
entities directly from an input text in the test set, and the latter is similar except we also
provide an example of extracted entities from a training text.

Prompt design. Table 2 provides a summary of prompts in the zero- and few-shot set-
tings. The five main building blocks of our prompt designs were 1) task instruction, 2)
task guidance, 3) output specification, 4) output retrieval, and, in the few-shot setting, 5) a
specific example. Task instruction conveys the overall set of directions for NER in a specific
but concise manner. To prevent ChatGPT from rephrasing entities, we instructed it to
extract their exact names from the input text. Task guidance provides entity definitions
from the original RareDis annotation guidelines. The objective is to help ChatGPT differ-
entiate between entity types within the context of the input text, as all four entities overlap
semantically. Output specification instructs ChatGPT to output the extracted entities in a
specific format to reduce post-processing workload. Output retrieval prompts the model to
generate a response. In the few-shot setting, we also provided an example with an input text
from the training set and its gold standard labels (i.e., entities labeled by the annotators).

Prompt format. In each setting, we experimented with two prompt formats: simple and
structured (Table 2). The former presents the prompt as a simple sentence, and the latter a
structured list. The simple sentence is shorter in length and resembles human instructions
provided in a conversational setting where different building blocks (i.e., task instruction,
task guidance, and output specification) are woven together as a single unit. Agrawal et al.
(2022) and Hu et al. (2023) used a similar approach to extract medications and clinical
entities, respectively. In contrast, the structured list resembles a recipe or outline that
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Setting Type Prompt Example

Zero-shot Simple Extract the exact names of [entity] , Extract the exact names of rare diseases , which are diseases

which are [defn] , from this passage that affect a small number of individuals, from this passage

and output them in a list: and output them in a list: "The exact prevalence and incidence

"[text from test set]". abetalipoproteinemia is unknown, but it is estimated to affect · · ·
...

· · · incidence of consanguineous marriages. Symptoms usually

become apparent during infancy."

Structured ###Task: ###Task:

Extract the exact names of [entity] Extract the exact names of rare diseases

from the input text and output them from the input text and output them

in a list. in a list.

### Definition: ### Definition:

[entity]s are defined as [defn] . Rare diseases are defined as diseases that affect a small number

of individuals .

### Input text: [text from test set]. ### Input text: "The exact prevalence and incidence of

abetalipoproteinemia is unknown, but it is estimated to affect · · ·
...

· · · incidence of consanguineous marriages. Symptoms usually

become apparent during infancy."

### Output: ### Output:

Few-shot Simple Passage: [text from training set]. Passage: "Binder type nasomaxillary dysplasia is a rare congenital

condition that affects males and females in equal numbers · · ·
...

· · · suggests that Binder syndrome occurs in less than 1 per 10,000

live births."

Extract the exact names of [entity], Extract the exact names of rare diseases, which are diseases

which are [defn], from this passage that affect a small number of individuals, from this passage

and output them in a list: and output them in a list:

[gold standard training labels]. Blinder type nasomaxillary dysplasia, Blinder syndrome

Passage: [text from test set]. Passage: "The exact prevalence and incidence of

abetalipoproteinemia is unknown, but it is estimated to affect · · ·
...

· · · incidence of consanguineous marriage. Symptoms usually

become apparent during infancy."

Extract the exact names of [entity], Extract the exact names of [entity],

which are [defn], from this passage which are [defn], from this passage

and output them in a list: and output them in a list:

Structured ### Task: ### Task:

Extract the exact names of [entity], Extract the exact names of rare diseases,

from the input text and output them from the input text and output them

in a list. in a list.

### Definition: ### Definition:

[entity]s are defined as [defn]. Rare diseases are defined as diseases that affect a small number

of individuals.

### Input text: [text from training set] ### Input text: "Blinder type nasomaxillary dysplasia is a rare

congenital condition that affects males and females in equal · · ·
...

· · · suggests that Binder syndrome occurs in less than 1 per 10,000

live births."

### Output: [gold standard training labels] ### Output: Blinder type nasomaxillary dysplasia, Blinder syndrome

### Input text: [text from test set] ### Input text: "The exact prevalence and incidence of

abetalipoproteinemia is unknown, but it is estimated to affect · · ·
...

· · · incidence of consanguineous marriages. Symptoms usually

become apparent during infancy."

### Output: ### Output:

Table 2: Summary of prompts. Different parts of the prompt are color-coded as follows:
Task instruction , Task guidance , Output specification , Output retrieval , and

Specific example .
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consists of multiple sub-prompts in a specific order. Chen et al. (2023) used a similar
format for evaluating ChatGPT and GPT-4’s NER performance on benchmark datasets.

Few-shot example selection. We explored two strategies for selecting an example text in
the few-shot setting. The first strategy involved randomly selecting a text from the training
set, and the second involved selecting the training text that was most similar to the test
text. The motivation for the second strategy is that different rare diseases may have sim-
ilar etiology, course of progression, and symptoms/signs. For example, Creutzfeldt-Jakob
disease and CARASIL (cerebral autosomal recessive arteriopathy with subcortical infarcts
and leukoencephalopathy) are neurological conditions that share similar signs, including
progressive deterioration of cognitive processes and memory. Thus, providing a training
text (and the corresponding gold standard entities) that was most similar to the test text
may improve ChatGPT’s performance. For each input text from the test set, we selected
the training text that had the highest similarity score based on spaCy pre-trained word
embeddings (spaCy).

2.3 Evaluation

To evaluate model performance on the test set, we computed the following evaluation met-
rics: precision, recall, and F1-score. Precision is the percentage of extracted entities found
by the model that were correct, and recall the percentage of gold standard entities extracted
by the model. F1 accounts for both metrics by taking the harmonic mean of precision and
recall. We calculated these metrics under two evaluation settings: exact and relaxed. For
an exact match, the extracted and true entity must share the same text span (i.e., bound-
ary) and entity type. For a relaxed match, the extracted and true entity must overlap in
boundary and have the same entity type. To ensure that stop words did not influence the
evaluation, we removed them from both the gold standard and model-extracted entities.

3. Results

3.1 Overall Results

Table 3 provides a summary of the model performance by entity type. Overall, BioClin-
icalBERT achieved an F1-score of 0.689 under relaxed match. In the zero-shot setting,
ChatGPT achieved F1-scores of 0.472 and 0.407 with the simple sentence and structured
list prompts, respectively. Performance generally improved in the few-shot setting with
F1-scores of 0.591 and 0.469; choosing the training text based on a similarity score led
to additional improvement, resulting in F1 scores of 0.610 and 0.544. For some entities,
ChatGPT had similar or better performance than its supervised counterpart, achieving F1-
scores of 0.776 (vs. 0.755) and 0.725 (vs. 0.704) for rare diseases and signs, respectively, in
the few-shot setting. Compared to prompts written as a structured list, simple sentences
generally achieved similar or better performance, suggesting that ChatGPT may be more
receptive to conversational prompts. Moreover, simple sentences required fewer tokens and
were preferred over structured lists from a cost perspective. In the few-shot setting, select-
ing a training example that was similar to the input text led to better performance than
random selection.
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Exact Relaxed

Paradigm Model Setting Entity Precision Recall F1 Precision Recall F1

Pre-train BioClinicalBERT Supervised Rare disease 0.689 0.720 0.704 0.772 0.739 0.755
+ Fine-tune Disease 0.494 0.488 0.491 0.532 0.538 0.535

Sign 0.561 0.516 0.538 0.676 0.735 0.704
Symptom 0.667 0.630 0.648 0.704 0.745 0.724

Overall 0.600 0.583 0.591 0.681 0.698 0.689

Prompt ChatGPT Zero-shot Rare disease 0.559 0.409 0.472 0.843 0.694 0.761
learning (Simple sentence) Disease 0.109 0.240 0.150 0.200 0.437 0.274

Sign 0.269 0.380 0.315 0.537 0.751 0.627
Symptom 0.070 0.619 0.126 0.084 0.762 0.155

Overall 0.203 0.369 0.262 0.365 0.670 0.472
Zero-shot Rare disease 0.765 0.489 0.597 0.887 0.634 0.740

(Structured list) Disease 0.184 0.210 0.196 0.261 0.293 0.276
Sign 0.266 0.324 0.292 0.448 0.543 0.491

Symptom 0.063 0.69 0.116 0.079 0.857 0.145
Overall 0.226 0.359 0.277 0.331 0.528 0.407

Few-shot Rare disease 0.719 0.441 0.547 0.937 0.634 0.756
(Simple sentence Disease 0.211 0.210 0.210 0.287 0.287 0.287

+ random example) Sign 0.457 0.409 0.432 0.721 0.671 0.695
Symptom 0.279 0.452 0.345 0.294 0.476 0.364

Overall 0.423 0.376 0.398 0.616 0.568 0.591
Few-shot Rare disease 0.569 0.532 0.550 0.750 0.758 0.754

(Structured list Disease 0.151 0.341 0.209 0.211 0.467 0.291
+ random example) Sign 0.273 0.406 0.327 0.478 0.698 0.567

Symptom 0.094 0.714 0.166 0.107 0.810 0.189
Overall 0.237 0.440 0.308 0.361 0.668 0.469

Few-shot Rare disease 0.818 0.484 0.608 0.967 0.634 0.766
(Simple sentence Disease 0.206 0.246 0.224 0.286 0.341 0.311

+ similar example) Sign 0.441 0.444 0.443 0.720 0.730 0.725
Symptom 0.260 0.310 0.283 0.308 0.381 0.340

Overall 0.422 0.403 0.412 0.617 0.603 0.610
Few-shot Rare disease 0.590 0.565 0.577 0.762 0.790 0.776

(Structured list Disease 0.199 0.437 0.273 0.297 0.653 0.408
+ similar example) Sign 0.337 0.487 0.398 0.561 0.802 0.660

Symptom 0.093 0.690 0.164 0.114 0.833 0.200
Overall 0.278 0.506 0.359 0.421 0.769 0.544

Table 3: Summary of model performance by entity type.

8



Among the four entities, rare diseases were associated with the highest accuracy for
both models across all settings. In contrast, diseases were more challenging for both models.
While BioClinicalBERT performed similarly at extracting signs and symptoms, ChatGPT
achieved significantly better performance for signs. Because the only difference between the
prompts for these entities was the task guidance, i.e., specifying symptoms as problems that
cannot be measured, whereas signs can be measured, this finding suggests that ChatGPT
is sensitive to even small variations in the prompt.

3.2 Detailed Error Analysis

We conducted an in-depth error analysis to elucidate ChatGPT’s performance. This anal-
ysis was crucial for gaining additional insight, as unlike other biomedical corpora, RareDis
contains entities with overlapping semantics. Specifically, rare diseases are similar to dis-
eases, and symptoms to signs. Depending on the context of the input text, diseases can
also be symptoms or signs.

In our analysis, we considered five types of errors: 1) incorrect boundary, 2) incorrect
entity type, 3) incorrect boundary and entity type, 4) spurious, and 5) missed. The first
and second refer to an extracted entity whose boundaries or type do not match those of the
gold standard label, respectively. The third refers to the case where neither the extracted
entity’s boundaries nor type match those of the true label. Spurious entities are extracted
entities that do not correspond to gold standard labels (false positive), and missed entities
are entities that the model failed to extract (false negative).

Table 4 shows the distribution of errors in the few-shot setting under exact match. The
most common error type for rare diseases is false negative (45%) followed by incorrect entity
type (31%). In the case of entity type errors, ChatGPT tended to label rare diseases as
diseases. These errors may be attributed to the fact that there is no single definition of
rare diseases; rather, the definition can vary by country or location (i.e., a disease is a rare
disease if it affects < 200, 000 people in the United States or no more than 1 in 2,000 in the
European Union). Moreover, this definition is subject to change over time, as a disease that
used to be rare at the time of annotation may have become more prevalent, or vice versa.
Because annotations are subjective, it’s possible that what the domain experts deemed as
rare diseases may not be reflected in textual information on the Internet before September
2021, ChatGPT’s knowledge cut-off date. For instance, the annotators labeled “gastroin-
testinal anthrax” and “cutaneous anthrax” as rare diseases based on domain knowledge,
but neither were listed in rare disease databases at the time of writing this manuscript.
For diseases, signs, and symptoms, false positives and false negatives were the most com-
mon error types. Based on manual review, many of these errors can be attributed to the
challenge of differentiating amongst these entities. Specifically, diseases could be signs or
symptoms, and the difference between signs and symptoms is very subtle. In some cases,
gold standard labels deviated from the definitions provided in the annotation guidelines, as
the lack of abnormalities was also labeled as an entity (i.e., “asymptomatic during infancy
or childhood” was labeled as a symptom by the annotators). As such, a portion of false
negatives could be attributed to these edge cases.
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Boundary ✗ Boundary ✓ Boundary ✗ Spurious Missed Total
Entity type ✓ Entity type ✗ Entity type ✗ (False Pos.) (False Neg.) errors

Rare disease 16 (10%) 48 (31%) 17 (11%) 4 (3%) 72 (45%) 157 (100%)

Disease 11 (4%) 7 (2%) 9 (3%) 147 (51%) 116 (40%) 290 (100%)

Sign 64 (17%) 8 (2%) 5 (1%) 146 (40%) 148 (40%) 371 (100%)

Symptom 3 (4%) 12 (16%) 2 (3%) 34 (44%) 25 (33%) 76 (100%)

Table 4: Error analysis for ChatGPT in the few-shot setting under exact match.

4. Discussion

In this work, we reformulated NER as a text generation task and established a benchmark
for ChatGPT’s performance on extracting rare disease phenotypes. Overall, while fine-
tuning a pre-trained biomedical language model led to better performance, prompt learning
with ChatGPT achieved similar or higher accuracy for some entities (i.e., rare diseases
and signs) with a single example, demonstrating its potential for out-of-the-box NER in
the few-shot setting. Given ChatGPT’s performance in the zero-shot setting, the model
could be leveraged as a pre-annotation tool to accelerate annotation start-up times for rare
diseases and signs (F1-scores of 0.761 and 0.627, respectively). Overall, we recommend
simple, sentence-based prompts, as they performed similarly or better than lists and were
shorter in length, leading to lower computational cost.

While other studies explored supervised deep learning techniques for extracting rare
disease phenotypes, ours is the first to study ChatGPT in the zero- and few-shot settings.
Segura-Bedmar et al. (2022) compared the NER performance of base BERT, BioBERT, and
ClinicalBERT, and found that ClinicalBERT had the highest overall F1-score (0.695). This
is comparable to BioClinicalBERT’s performance in the current study (0.689). Fabregat
et al. (2018) used support vector machines and neural networks with a long short-term
memory architecture to extract disabilities associated with rare diseases and obtained an
F1-score of 0.81. While this is much higher than the overall F1-score in the current study,
Fabregat et al. (2018) focused on extracting a single entity, i.e., disabilities, whereas our
goal was to recognize and differentiate among four entities with overlapping semantics. Hu
et al. (2023) and Chen et al. (2023) evaluated ChatGPT on biomedical NER and found
that it had lower performance than fine-tuning pre-trained language models. While our
overall results aligned with this finding, we discovered that ChatGPT had similar or better
performance on specific entities, suggesting that with appropriate prompt engineering, the
model has the potential to match or outperform fine-tuned language models for certain
entity types.

Our work has several potential limitations and extensions. First, we only had access to
a subset of the RareDis corpus (832 out of 1041 texts), so our results may not fully reflect
ChatGPT’s performance across the entire spectrum of rare diseases. Second, the current
work focuses on ChatGPT and does not include GPT-4 or other variants (e.g., LLaMA,
Alpaca, etc.), so broadening the current set of experiments to include other large language
models is a natural extension. Last, though manually created prompts are intuitive and
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interpretable, evidence suggests that small changes can lead to variations in performance
(Cui et al., 2021). A promising alternative is to automate the prompt engineering pro-
cess. To this end, Gutiérrez et al. (2022) employed a semi-automated approach combining
manually-created prompts with an automatic procedure to choose the best prompt com-
bination with cross validation. In addition, fully-automated prompt learning approaches
where the prompt is described directly in the embedding space of the underlying language
model are also interesting extensions of the current work (Ma et al., 2021; Taylor et al.,
2022).

The advent of large language models is creating unprecedented opportunities for rare
disease phenotyping by automatically identifying and extracting diseases related concepts.
While these models provide valuable insights and assistance, researchers and clinicians
should critically evaluate model outputs and be well-informed of their limitations when
considering them as tools for supporting rare disease diagnosis and treatment.

5. Data and Code

The RareDis corpus can be found using the link provided in Mart́ınez-deMiguel et al. (2022).
The code for the current study can be found at
https://github.com/cathyshyr/rare disease phenotype extraction.
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Martin Chapman, Jesús Domı́nguez, Elliot Fairweather, Brendan Delaney, and Vasa Curcin.
Using computable phenotypes in point-of-care clinical trial recruitment. In Public Health
and Informatics-Proceedings of MIE 2021: Studies in Health Technology and Informatics,
pages 560–564. IOS Press, 2021.

Qingyu Chen, Jingcheng Du, Yan Hu, Vipina Kuttichi Keloth, Xueqing Peng, Kalpana
Raja, Rui Zhang, Zhiyong Lu, and Hua Xu. Large language models in biomedical nat-
ural language processing: benchmarks, baselines, and recommendations. arXiv preprint
arXiv:2305.16326, 2023.

Xiang Chen, Lei Li, Shumin Deng, Chuanqi Tan, Changliang Xu, Fei Huang, Luo Si, Huajun
Chen, and Ningyu Zhang. Lightner: a lightweight tuning paradigm for low-resource ner
via pluggable prompting. arXiv preprint arXiv:2109.00720, 2021.

Janet Elizabeth Childerhose, Carla Rich, Kelly M East, Whitley V Kelley, Shirley Simmons,
Candice R Finnila, Kevin Bowling, Michelle Amaral, Susan M Hiatt, Michelle Thompson,
et al. The therapeutic odyssey: Positioning genomic sequencing in the search for a child’s
best possible life. AJOB Empirical Bioethics, 12(3):179–189, 2021.

Claudia Ching Yan Chung, Hong Kong Genome Project, Annie Tsz Wai Chu, and Brian
Hon Yin Chung. Rare disease emerging as a global public health priority. Frontiers in
public health, 10:1028545, 2022.

Julie S Cohen and Barbara B Biesecker. Quality of life in rare genetic conditions: a sys-
tematic review of the literature. American Journal of Medical Genetics Part A, 152(5):
1136–1156, 2010.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang. Template-based named entity
recognition using bart. arXiv preprint arXiv:2106.01760, 2021.

12



Mary F Davis, Subramaniam Sriram, William S Bush, Joshua C Denny, and Jonathan L
Haines. Automated extraction of clinical traits of multiple sclerosis in electronic medical
records. Journal of the American Medical Informatics Association, 20(e2):e334–e340,
2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Hermenegildo Fabregat, Lourdes Araujo, and Juan Martinez-Romo. Deep neural models
for extracting entities and relationships in the new rdd corpus relating disabilities and
rare diseases. Computer methods and programs in biomedicine, 164:121–129, 2018.
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