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Abstract
Scientists, being human, make mistakes. We transcribe things incorrectly, we make errors in our code, and
we intend to do things and then forget. The consequences of errors in research may be as minor as wasted
time and annoyance, but may be as severe as losing months of work or having to retract an article. The pur-
pose of this tutorial is to help lab groups identify places in their research workflow where errors may occur
and identify ways to avoid them. To do this, this article applies concepts from human factors research on
how to create lab cultures and workflows that are intended to minimize errors. This article does not provide
a one-size-fits-all set of guidelines for specific practices to use (e.g., one platform on which to backup data);
instead, it gives examples of ways that mistakes can occur in research along with recommendations for sys-
tems that avoid and detect them. This tutorial is intended to be used as a discussion prompt prior to a lab
meeting to help researchers reflect on their own processes and implement safeguards to avoid future errors.

Translational Abstract
Everyone makes mistakes. In science, mistakes can occur in many ways: Researchers may transcribe things
incorrectly, make typos when writing code to analyze data, forget to do something they intended to, and so
forth. These mistakes may simply waste time or require redoing work, but in more serious cases, they can
ruin an experiment or lead to false conclusions. However, learning how to avoid errors in research isn’t a
standard part of training. This tutorial is intended to help lab groups identify places in the research process
where errors may occur and identify ways to avoid them. To do so, this article draws on lessons from high-
risk fields such as aviation, surgery, and construction, all of which have developed explicit, practical strat-
egies to reduce mistakes on the job. This tutorial is intended to be used as a discussion prompt before a lab
meeting to help researchers reflect on their own processes and implement safeguards to avoid future errors.

Keywords: error detection, independent verification, mistakes

No one is immune from making mistakes. In research, mistakes
might include analyzing raw data instead of cleaned data, revers-
ing variable labels, transcribing information incorrectly, or inad-
vertently saving over a file. The consequences of these kinds of
mistakes can range from minor annoyances like wasted time and
resources to major issues such as retraction of an article (Kovacs
et al., 2021). Mistakes can happen under any circumstances, but
the incentive structure of science—which rewards rapid, prolific
publication rather than slow, methodological, and systematic work—
may increase the frequency of their occurrence.

Estimates of error frequency are difficult to obtain because many
go undetected or unreported. One way of estimating error rates is to
conduct reanalyses of published work; a recent assessment of statisti-
cal reporting in psychology journals over the last 30 years showed
that 49.6% of articles had at least one statistical inconsistency (e.g.,
inaccurate p-values given the degrees of freedom and test statistic
reported; Nuijten et al., 2016). However, this approach can detect
only one kind of error—inaccurate statistical reporting—and does
not enable us to distinguish between true mistakes (e.g., copy-pasting
the wrong p-value) and intentional misreporting (e.g., rounding a p-
value to be slightly lower than it actually was).

Another method for assessing error prevalence is through researcher
surveys. In a survey of 486 psychology researchers, 79% reported that
they had made mistakes with “very low” or “low” frequency (Kovacs
et al., 2021). However, given the stigma associated with admitting
being wrong in science (Fetterman & Sassenberg, 2015), self-reported
error rates may underestimate true error rates. In addition, many errors
are likely to go undetected, further deflating self-reported error rates.
Even if errors occur relatively infrequently, their consequences can be
severe: In Kovacs et al.’s (2021) survey, when asked about the most
serious mistake made, 22% involved major or extreme consequences
such as “strongly affecting the central conclusion of the article,” and
“damaged professional reputation.”

Although some changes to the practice of science can be con-
tentious (e.g., requirements to preregister), the wonderful thing
about mistakes is that we can all agree they are a problem! So
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what can we do to make it less likely we will make mistakes, and
more likely we will catch the mistakes we do make? The first step
is understanding why errors occur.

Why Do Errors Happen?

We can conceive of the root of errors in two different ways: the
person approach and the systems approach (Reason, 2000). In the
person approach—or, as Dekker calls it in The Field Guide to
Understanding Human Error (Dekker, 2017), the “bad apple
theory of human error”—errors are attributed to an individual’s
negligence, forgetfulness, or inattention. The systems approach,
on the other hand, thinks of errors as consequences, not causes;
that is, errors are “the inevitable by-product of people doing the
best they can in systems that themselves contain multiple subtle
vulnerabilities” (Dekker, 2017, p. 4). The person approach may be
appealing because it is usually possible to identify someone who is
responsible. It also provides easy resolution when errors occur:
Simply direct blame toward whomever made the mistake. How-
ever, the person approach can do little to systematically reduce the
likelihood of future errors, as it does not target the root cause of
mistakes. Thus, preventing future errors requires taking a systems
approach and conceiving of mistakes as shortcomings in our work-
flows, rather than failures of individuals (Rouder et al., 2019).
Fields in which errors have immediate and dire consequences

such as medicine (Kohn et al., 2014; Leape, 2009), aviation
(Helmreich, 2000), and nuclear power (Heo & Park, 2010) have
already adopted a systems approach (see Frese & Keith, 2015 for
a review) and recognize that errors are inevitable, even among
highly trained professionals. One of the pillars of DevOps culture
(Kim et al., 2021)—an approach used widely in software engineer-
ing—is the principle of continuous learning. This advocates for
correcting mistakes without blame, identifying the root of the mis-
take, and sharing what was learned from the mistake throughout
the institution. For example, when developers at Google identify
an error, they conduct “blameless postmortems” focused on identi-
fying why the mistake happened and with the assumption that
“everyone involved in an incident had good intentions and did the
right thing with the information they had” (Lunney & Lueder,
2017). The name, blame, and shame approach that is often applied
in cases of scientific misconduct does little to reduce the likelihood
of unintentional errors (Nath et al., 2006).
Thus, psychologists and other scientists may be able to learn

from disciplines in which errors are severe and costly enough that
significant resources have been devoted to understanding how to
avoid them (see Aboumatar et al., 2021). This article is not
intended to summarize the extensive literature on best-practices
for data management; interested readers should consult the recom-
mended readings for more in-depth tutorials on that topic. Instead,
the article aims to bring the conceptual approach many other disci-
plines take regarding error prevention to psychological research-
ers. A guiding principle underlying this work is that we cannot
simply hope that mistakes will not happen; we must assume mis-
takes will occur and create systems to catch them. Next, the article
presents guidelines for fostering a lab that embraces safety culture
(see below), followed by recommendations for standardizing lab
practices with error prevention in mind.

Best Practices for Error Prevention

Safety Culture in the Lab

The term safety culture (or “climate of safety”) has been used
by human factors researchers since the Chernobyl nuclear plant
disaster in 1986 (Pidgeon, 1991) to describe a set of practices,
norms, and beliefs that are intended to minimize danger within an
organization (Guldenmund, 2000; Pidgeon & O’Leary, 1994).
This framework for fostering a culture to reduce aversive events
can easily be applied to research labs. Pidgeon and O’Leary
(1994) argue that safety culture is promoted by four facets.

First, responsibility for safety should not lie solely at the opera-
tional level; senior management must identify safety as a core
value and demonstrate a commitment to it. In the airline industry,
this means that management makes it clear that they would prefer
delayed flights over potentially unsafe flights and, therefore, incen-
tivizes practices that promote safety rather than efficiency. In the
research lab, this means that senior lab personnel must be actively
involved in crafting systems to help their trainees (and them-
selves!) avoid making errors (see below), and be willing to accept
slower, more methodical progress.

The second component for building safety culture proposed by
Pidgeon and O’Leary (1994) is shared concern about hazards
within an organization. That is, the burden of thinking about
safety should not be carried by just one part of the organization. In
a typical research project in which all contributors (e.g., authors)
are invested in the work, shared concern will likely occur natu-
rally. However, when people are involved in the work but not
invested in it (e.g., individuals responsible for data entry without
much intellectual engagement or the expectation of authorship),
they may feel less concerned about ensuring the accuracy of their
work. Thus, shared concern may be facilitated by ensuring that
everyone involved in the project is invested in its accuracy and
understands how their work contributes to its success.

The third component for building safety culture is establishing
and conveying realistic norms and rules about hazards. Senior lab
personnel can explicitly convey to trainees that there is an expecta-
tion that all work in the lab will follow standard procedures
intended to prevent errors. Just as rules about safety are explicitly
posted on a construction site (e.g., “Hard hats must be worn
beyond this point”), labs can also explicitly convey rules about
implementing practices to reduce errors (e.g., “All code must be
independently reviewed by at least one other contributor”).

Finally, Pidgeon and O’Leary (1994) advocate for ongoing reflec-
tion about current practices. Although some concerns about safety
can be predicted ahead of time, new ones will always arise, so it is
important to make discussing safety a regular habit. Normalizing
conversations surrounding risks and errors in the lab will help iden-
tify new threats, and may also make lab members more willing to
admit when they have found errors. Indeed, research in auditing firms
indicates that people are more likely to report errors in firms that
have an open climate around errors rather than those that take a more
punitive approach to errors (Gold et al., 2014). To help build a cul-
ture that reflects on error prevention in a research lab, senior mem-
bers may share stories about their own mistakes or near-misses.
Talking about mistakes can also be part of the process of onboarding
new students so everyone in the lab understands the lab philosophy
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surrounding errors and their responsibility to say something when
they occur. For example, part of the process of training new students
in my lab involves reading and discussing this document, and my lab
handbook includes the statement: “When mistakes happen (or nearly
happen) in the lab, it’s a great opportunity for us to figure out how to
make our systems work better. Tell Julia about it right away and
we’ll use what you found to improve the work we do.”
Safety culture is a guiding principle for many industries, includ-

ing mining (Pillay et al., 2010), construction (Wamuziri, 2006),
offshore drilling (Cox & Cheyne, 2000), medical care (Singer &
Vogus, 2013), and many others. Although errors in psychological
research are not likely to be immediately life-threatening in the
way that mistakes in these disciplines can be, psychology
researchers can benefit from the lessons derived from these
higher-risk fields to minimize errors. In addition to this conceptual
approach of fostering a culture that accepts the reality of errors
occurring, reducing errors also requires modifying lab procedures.

Lab Protocols

Given that the most common cause of self-reported research
errors is poor project preparation or management (Kovacs et al.,
2021), a substantial proportion of errors may be avoided through
programmatic changes to a research workflow.

Record Keeping

Keeping detailed records is part of the scientific process. However,
in many labs, the only written record of the work is the article that is
ultimately produced. Keeping a written record of the process of the
work in addition to the final product it produces is useful for docu-
menting the decisions that were made and reducing the likelihood of
errors. In my lab, we keep these records in two forms: a Project Log
and a Participant Log. The Project Log consists of a shared Google
Doc that everyone on the team contributes to, but could be imple-
mented in another form such as an electronic lab notebook (Nishida
et al., 2020). Although the specific content within the Project Log
will vary across labs, it may be helpful to include decisions made and
the rationale for them (e.g., “we’re going to run this study online
rather than in the lab because it needs to be run between-subjects and
we’ll have trouble recruiting enough participants in the lab”), con-
crete steps in the research process (e.g., “VB wrote the code for anal-
ysis”), explanations of work that contributed to the article (e.g.,
“NDH drafted the introduction of the article”), and notations of when
the work was checked by another lab member (e.g., “KS checked
that the stimuli were properly labeled”).

Having a detailed log of the process helps facilitate checking
whether the work was done correctly. For example, knowing the
intended volume of auditory stimuli will enable someone checking

Figure 1
A Snippet of a Sample Project Log From Our Lab

Note. Acronyms are the initials of the team member who completed the task.
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the work to verify that the actual volume matched the final volume
(see Sample Project Log in Figure 1). A routine part of logging
work can be flagging things that need to be checked by someone
else. For example, in the May 3 entry of the sample project log in
Figure 1, JS originally wrote “Who can check these stimuli to
make sure they’re labeled correctly?” and after checking them, JV
replaced that line with “JV checked all stimuli . . ..” Thus, the log
includes both a reminder to check work and information verifying
that it was checked.
An added benefit of using a Project Log is that having a clear re-

cord of contributions over the course of the entire project can facil-
itate decisions about authorship at a later date. Knowing exactly
how each individual contributed to the project may be useful for
determining author order and can also help groups using the
CRediT (Contributor Roles Taxonomy; Allen et al., 2014) system
for tracking different forms of contributions to scientific scholarly
output (see Holcombe et al., 2020 for an introduction to a web app
and R package called Tenzing that is designed to facilitate the use
of CRediT standards).
Many research groups also include a Participant Log for every

project: a spreadsheet that includes each participant’s ID, the date
and time they were run and by which experimenter, and a place to
provide notes about anything unusual that happened during data
collection (e.g., the fire alarm went off and they had to stop early).
This facilitates making decisions about excluding participants
prior to looking at their data and can help to clarify missing or
mislabeled data. This record is also useful if issues are discovered
later that affect some but not all of the data (e.g., a particular ex-
perimenter was giving instructions incorrectly, one of the testing
computers had a timing issue or was presenting auditory stimuli at
the wrong level, etc.). Although information in the Participant Log
is typically only used within a lab while a study is being run, if
there are situations in which any of the information contained in
the log may be useful postpublication, researchers should consider
storing the Participant Log with the rest of the study data and mak-
ing it accessible to others (subject to safeguards to protect partici-
pant identity).

Consistency Across Teammates

Labs often allocate work such that the same task—running partic-
ipants, setting up equipment, transcribing participant responses—is
done by multiple people. Using a written protocol for these tasks
helps to ensure consistency in how these tasks are completed
and avoid errors due to misunderstandings or misremembering
(Gawande, 2010). This can be implemented via detailed, written
protocols for how participants should be run that include the
verbatim instructions experimenters should give, the order in
which tasks should be completed, reminders about where to save
data and what to name files, and other notes about administration.
Some groups have even recorded videos of mock sessions of data
collection to help ensure consistency across research sites (R. Klein
et al., 2014).
For studies that require that lab members transcribe verbal

responses from participants or code behaviors from videos, it may
also be helpful to include protocols that give detailed information
about how to transcribe or code responses for each task (e.g., a
note to hide the column with the experimental condition when
scoring to limit bias in the transcription process). Even if many

transcription choices are straightforward, if coders are not given
explicit instructions about what to do in unusual circumstances
(e.g., the participant skips several trials, provides two words
instead of one, the response is unintelligible, etc.), different people
may code those responses differently. Using these standardized
processes helps to avoid researcher misunderstanding or miscom-
munication about how the work is intended to be completed.

Errors can also be avoided by standardizing practices related to
data storage and organization. For example, someone might be for-
given for thinking a file called “project_data_final.csv” was the
appropriate data to be analyzed, despite the fact that they should
have used “project_data_final_FINAL.csv” (I would not recom-
mend this naming convention). To help avoid these kinds of
errors, protocols can include explicit instructions for file naming
conventions, standardized practices for commonly used variables,
and instructions about the file types that should be used. Project
TIER (Project TIER, 2022) provides a set of standards for docu-
menting research and is likely to be a useful starting point for
those looking to standardize how data are stored and organized
(see also Sandve et al., 2013).

Checking Work

If we start with the assumption that mistakes will happen even
when people are trying to avoid them, we must come up with
methods of checking our work to find those mistakes. Among the
most dominant paradigms in many safety-related disciplines (Lar-
ouzee & Le Coze, 2020) is James Reason’s “swiss cheese” model
of human failures. According to this model, in a complex system,
each layer of protection against errors provides some defense but
is imperfect. Although any given process may have holes in it, as
long as the weaknesses of one layer are caught before the next,
errors will not persist all the way through the project (Reason,
2000).

In scientific research, the first layer of protection against scien-
tific errors is the approach of the individual researcher. This
includes practices like “go slowly” and “be careful.” For many,
this is the extent of error prevention practices. As with any layer,
however, it is imperfect. Thus, individuals can implement a second
layer of protection by altering their workflow based on an under-
standing of how and why errors occur. When writing analysis
code, for example, researchers can regularly write in tests to
ensure that some of the assumptions about the data are actually
true. This may include thinking through the number of participants
or observations there should be at a given point in the analysis and
including a line of code to check that the assumed number matches
how many there actually are. It also includes visualizing all the
raw data to identify obvious errors (e.g., ensure that proportions
are bounded by 0 and 1). This additional scrutiny certainly catches
some errors, but is not sufficient to catch all mistakes, as many
errors occur in unexpected places.

The third layer of protection happens at the level of the lab or
research group, and relies on multiple people verifying each step
of the research process. In industries that rely heavily on coding, it
would be considered poor practice to “publish” code that a single
person had written and no one had verified in-house, but this is
common practice in psychology. Additional scrutiny can be
achieved by asking someone who did not write the code to thor-
oughly check every line to verify it. Given that it may be difficult
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to thoroughly check data you believe are correct, insulating the
“checker” from the hypotheses or outcomes (so that they are
unaware of whether the results are expected or unexpected) may
be helpful. Another strategy is telling the “checker” that there is an
error somewhere in the code (you can even plant one, provided
you come up with a system to make sure you remove it later!) to
encourage them to look closely.1 Alternatively, error-proofing
code can be achieved by having two people write code independ-
ently to see if they arrive at the same conclusion. Success at this
level is enhanced by having established a safety culture within the
group so that the lab is mutually invested in the accuracy of every-
one’s work.
An additional layer of defense against errors can happen during

the peer-review process, when reviewers identify issues that have
managed to sneak past both the individual and the research group.
Error detection at this level is facilitated by giving reviewers
access to data and code associated with the experiment as many
errors may not be detectable from the article alone. However, it is
worth noting that carefully checking code is not a task many
reviewers engage in, so authors should not rely on the peer-review
process to identify errors.
The final layer of scrutiny is the scientific community, postpu-

blication. Ideally, everyone wants to avoid or catch mistakes
before publication. However, if that cannot be achieved, it is better
to catch problems once they are published than to let them remain
uncorrected in the literature. Thus, after publication, the availabil-
ity of data and code in a publicly accessible repository such as the
Open Science Framework further increases the likelihood that any
mistakes will be found eventually. The thought of making your
mistakes easier for others to find may be daunting, but finding
them early facilitates scientific progress and ensures that future
scientists do not waste time and resources building on spurious
findings (Bishop, 2018).
In their work on building high-reliability organizations, Weick

et al. (1999) advocate for approaching work with the expectation
that things will go wrong and therefore actively seeking out prob-
lems (what they refer to as a “preoccupation with failure”).
Researchers are more likely to go looking for problems or mis-
takes in their work when the data are not in line with their expecta-
tions. The danger of this “selective checking” is that we are only
critical of a subset of our results: those we do not expect (see Bak-
ker & Wicherts, 2011). Developing systems of looking for mis-
takes (Rouder et al., 2019)—and being open to finding them!—
ensures that all results (not just surprising ones) are checked.
Incorporating error hunting into every project makes it clear that
checking for errors is not an indication of a lack of trust, it is sim-
ply part of the lab workflow.

Making Your Lab More Error-Tight

A recurring theme when reading about scientific errors is that
mistakes happen in unexpected places and in unexpected ways.
Reading examples of others’ mistakes may therefore be useful to
identify places where mistakes may happen in your process. Table 1
catalogs errors that researchers have made or nearly made at every
stage of the research process: designing and programming experi-
ments, collecting data, storing data, analyzing data, and reporting
results. The rightmost column contains references to resources you

can use to implement the approaches if you are not familiar with
them.

This tutorial is meant to be discussed by research groups in a
lab meeting. I recommend reading the article prior to the meeting,
and then using the steps below to structure your discussion about
how these issues apply to your own research.

Step 1

Make a list of the stages in a typical research project in your lab
(e.g., what happens during the design phase, the data collection
phase, etc.). Be sure to list every step even if it seems error-proof.
For example, you may note that during each experimental session,
participants must be given instructions, run on the most up-to-date
version of the experiment, and assigned to the appropriate partici-
pant group.

Step 2

Brainstorm ways that errors might happen at each stage. These
might be inspired by the examples given in Table 1, but it may
also help to talk about ways that each phase was challenging to
learn, or things that were unclear to trainees when they were first
learning each stage. It is also likely to be useful to discuss ways
that things have almost gone wrong previously: Identifying places
where mistakes were nearly made is a great way of finding poten-
tial weak spots in a workflow. In the previous example, the experi-
menter could give the instructions incompletely or incorrectly, run
the wrong version of the experiment, or assign a participant to the
wrong group.

Step 3

Identify specific steps that could be used to reduce the likeli-
hood of mistakes occurring at each stage (see the “How to avoid”
column). To avoid the errors described in Step 2, you may decide
to write a protocol that specifies exactly the instructions that
should be given, ensure that the folder that contains the experiment
does not contain anything else that it may be confused with (e.g.,
other experiments), and ask experimenters to double check the
participant group before they begin.

It may be useful to write down any proposed changes to your
workflow in a document that everyone has access to (e.g., final
data files for analysis will be named . . .; the process for getting
someone to independently check analysis code is . . .), such as a
lab manual (Aly, 2018; Mehr, 2020). Keep in mind that if making
all these changes seems overwhelming, it is perfectly reasonable
to identify and implement a few changes that are manageable at
first.

Step 4

Unfortunately, mistakes can happen, even in labs that imple-
ment all these practices. Therefore, it is worthwhile to discuss
what to do in the event that someone finds an error. For example,

1 A joke among computer programmers is “Ask a programmer to review
10 lines of code, they’ll find 10 issues. Ask them to do 500 lines and they’ll
say it looks good” (Özil, 2013). Consider implementing checking at regular
intervals rather than at the end of a project.
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Table 1
Types of Errors That Can Be Made at Each Stage of the Research Process and How to Avoid Them

Stage What can go wrong Example How to avoid

Designing/
programming

Errors in stimulus presentation
software

Using mislabeled stimuli (Grave, 2021);
programming an influential difference
in the timing of two conditions (Strand,
2020); program was intended to ran-
domly assign people to conditions but
only assigned them to one condition.

Independent checking; leaving time to pilot
and analyze pilot data prior to beginning
the experiment so errors in programming
are caught early; saving as much infor-
mation as possible to recreate a trial if
necessary

Forgetting what you decided
to do and why, or what you
hypothesized and why

“Did we predict an interaction here?”;
“Why did we choose Method A over
Method B?”

Keeping records of decisions in a Project
Log; formally preregistering your work
(B. A. Nosek et al., 2018)

Collecting data Equipment malfunction/
changes

Eyetracker becomes improperly cali-
brated; keyboard is sticky; screen reso-
lution changes (Rouder et al., 2019);
presenting stimuli at the wrong volume

Separate “running” computers from
“coding/working” computers; keeping
records of what equipment is used for
each participant (to know which data to
exclude) in a Participant Log

Instructions are given to par-
ticipants inconsistently

Telling some participants “complete both
tasks to the best of your ability” and
some “complete both tasks, but this
task is the most important”

Using data collection protocols with clear
scripts (or instructing experimenters to
only read what is written on the instruc-
tion screen); keeping a Participant Log
that includes which experimenters ran
which participants

Errors in manual coding Incorrectly transcribing participant
responses (Werner, 2018)

Giving explicit written instructions about
how to do tasks; double-code pilot data
to ensure consistency

Experimenter forgets some-
thing during data collection

Forgetting to hit “record” prior to starting
the participant on the task

Using data collection protocols with check-
lists for each step (Gawande, 2010)

Storing data Data loss Accidentally deleting files/writing over
files

Using systems with version control like Git
(Blischak et al., 2016; Chacon & Straub,
2014) or cloud storage; storing files in
online repositories like the Open Science
Framework to avoid overwriting and
clearly delineate the active copy (see
O. Klein et al., 2018 for a comparison of
data sharing platforms); maintaining
backups of all materials

Using the wrong version of
the data; poor documenta-
tion (not knowing what files
to use/code to run/etc.)

Analyzing raw rather than cleaned data Clear naming standards (Gorgolewski et
al., 2016); using consistent file structure
(e.g., only one file named project_data.
csv is ever stored in the “data analysis”
folder); maintaining a Project Log

Variables in the data are mis-
labeled/ambiguous

Running the analysis on the wrong accu-
racy column in a dataset that contained
two columns for accuracy—raw score
and proportion correct; flipping varia-
bles (Miller, 2006); using mislabeled
physical materials (Gewin, 2015);
unintentionally replacing missing val-
ues (Aboumatar et al., 2021)

Setting up a lab style guide with clear and
consistent naming standards (Arslan,
2019), including codebooks or metadata
(e.g., each dataset is accompanied by a
document that describes what each of
the column headers means), manually
checking for out-of-range values.

Unwanted changes to data Excel converting numbers to dates
(Ziemann et al., 2016)

Using software without the known issues
(Ziemann et al., 2016); following best
practices for data organization in spread-
sheets (Broman & Woo, 2018); imple-
menting in-house independent checking

Analyzing data Coding errors Creating composite scores without reverse
coding the necessary items; failing to
exclude participants that should have
been, treating a variable as an integer
rather than a factor; scripting/coding
error (Mann, 2013; Poldrack, 2013;
Poldrack et al., 2020), reversing variable
codes (Aboumatar et al., 2021)

Cleaning and analyzing data using a script-
ing language such as R in which every
step is documented (Helping Organizations
Migrate to the R Language, 2016);
employing in-house independent
checking; copiloting (Veldkamp et al.,
2014); using a “Red Team” (Lakens,
2020); unit testing (Testing Your Code,
2013; Unit Testing for R, n.d.); having
two coders work collaboratively to
write code (“pair programming”; J. T.
Nosek, 1998)

(table continues)
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you might set as a lab policy that after identifying an error, the first
step is to ask someone to verify that a problem has occurred (to
avoid alerting the whole lab in the event of a false alarm). It is also
useful to discuss who to tell first, how to evaluate if the problem
affects published papers or works in progress, and so on. For prin-
cipal investigators, this can be an important opportunity to explic-
itly tell your trainees that they will not be punished or penalized
for reporting an error. It may also be useful to remind students that
sharing stories of near-misses are also informative, because it is
possible to incorporate changes to your workflow based on those
as well.

Step 5

After implementing some of the changes, plan a follow-up
meeting where you can discuss what worked well and what needs
improvement, and refine your process as needed.

Conclusions

Although entirely eliminating errors from research seems like a
laudable goal, it is important to consider that the strategies
described above require researchers’ time and effort that could
otherwise be invested elsewhere. To evaluate the value of these
error mitigation practices, it may therefore be necessary to weigh
the potential benefits (i.e., What are the consequences of avoiding
errors?) against the costs (i.e., How much time and effort are nec-
essary to implement these steps?). For some disciplines, this cost-
benefit analysis is clear. In accounting, where errors are financially
costly (Stefaniak & Robertson, 2010), or in surgery (Haynes et al.,
2009) and aviation (Degani & Wiener, 1991), in which mistakes
can be fatal, systems explicitly designed to avoid errors are stand-
ard practice, even if they decrease efficiency.
In psychological research, major mistakes may threaten

researchers’ careers, hamper progress in the field, and undermine
public faith in science. Thus, the clear benefit of implementing
error mitigation strategies is avoiding these adverse outcomes.
However, many of the methods described in this article have

benefits beyond error prevention as well. For example, practices
like preregistration and sharing data increase research transparency
and facilitate a more cumulative science, maintaining a digital or-
ganization system saves time and energy searching for content,
and writing commented code facilitates reuse.

The costs of implementing error-prevention practices can range
from very low (adopting a consistent file naming convention) to
very high (having three team members independently write the
same analysis code to ensure they arrive at the same outcome), so
researchers must decide the approach that seems most reasonable
given the context in which the decision is made. Critically, all the
changes suggested above can be incorporated piecemeal; it is pos-
sible to add any component individually rather than implementing
them all at once, so the individual costs need not be paid in one
lump sum. Further, the costs in our discipline are already reduced
because high-risk disciplines have done the hard work of identify-
ing effective strategies for reducing errors. Thus, psychology
would benefit from adopting these strategies; we must approach
our work with the understanding that humans will make mistakes
and preventing those mistakes requires reexamining both lab cul-
ture and research workflow.

Resources

For groups who wish to read more, I recommend:

• Bishop, D. V. M. (2018). Fallibility in science: Responding
to errors in the work of oneself and others. Advances in
Methods and Practices in Psychological Science, 1(3),
432–438.

• Kovacs, M., Hoekstra, R., & Aczel, B. (2021). The role
of human fallibility in psychological research: A sur-
vey of mistakes in data management. Advances in
Methods and Practices in Psychological Science, 4(4),
25152459211045930.

• Klein, O., Hardwicke, T. E., Aust, F., Breuer, J.,
Danielsson, H., Hofelich Mohr, A., Ijzerman, H., Nilsonne,
G., Vanpaemel, W., & Frank, M. C. (2018). A practical

Table 1 (continued)
Stage What can go wrong Example How to avoid

Statistical errors Failing to include random slopes in an
analysis that warranted them (Rohrer et
al., 2021)

Implementing in-house independent check-
ing; code copiloting (Veldkamp et al.,
2014); using a “Red Team” (Lakens,
2020)

Reporting/
writing

Copy/paste errors While transcribing values from the statis-
tical output to the manuscript file,
copy/pasting the wrong value

Using R Markdown (Aust & Barth, 2020;
Xie et al., 2020) or another system to
avoid having to cut/paste; in-house inde-
pendent checking

Incorporating incorrect
elements

Inserting the wrong figure into a manu-
script (Rouder et al., 2019)

Using R Markdown (Aust & Barth, 2020;
Getting Started with R Markdown, n.d.;
Xie et al., 2020) or another system to
link the data and figures with the paper;
independent checking the output against
the manuscript

Citation errors Citing the wrong article; failing to
include a citation for an article

Using a reference manager to manage cita-
tions rather than typing references by
hand; independent checking to ensure
the article cited actually supports the
claim being made and all cited articles
appear in the reference section
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guide for transparency in psychological science. Collabra:
Psychology, 41(1), 20. https://doi.org/10.1525/collabra.158

• Rouder, J. N., Haaf, J. M., & Snyder, H. K. (2019).
Minimizing mistakes in psychological science. Advances in
Methods and Practices in Psychological Science, 2(1), 3–11.

• Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E.
(2013). Ten simple rules for reproducible computational
research. PLoS Computational Biology, 9(10), e1003285.

• Project TIER. (2022). https://www.projecttier.org
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