Skip to main content

Unbiased Quantification of Golgi Scattering and Golgi–Centrosome Association

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

Abstract

The vertebrate Golgi complex is a large dynamic organelle which undergoes morphological changes and fragmentation both as a part of normal physiological dynamics and under disease conditions. The Golgi is known to have a functionally important relationship with the centrosome. The extent of the spatial association between these two organelles varies in a dynamic and regulated manner. It is essential to have a reliable unbiased approach to evaluate Golgi volume, Golgi extension/scattering in the 3D cell space, and spatial association of the Golgi with the centrosome. It is also important that each of these features is evaluated by a simple metric, one measurement per cell, so that the variability and deviations in the cell population can be easily assessed. Here, we present an approach to analyze confocal microscopy image stacks to easily measure Golgi volume, scattering, and association with the centrosome. The approach is based on a custom MATLAB script, provided here as a supplement, and also uses widely available software (ImageJ and/or Imaris). The output of the script is a table with the following parameters: Golgi volume in voxels, Golgi volume in μm3, “Golgi–Golgi” distance (averaged distance between all Golgi voxels), Golgi–centrosome distance (averaged distance between each Golgi voxel and the nearest mother centriole), and centrosome–centrosome distance (for cells with duplicated centrosome, the distance between the mother centrioles). The approach can also be applied to analyze distribution of any fluorescently- labeled structure within a cell and its association with the centrosome or any single point within the cell volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shorter J, Warren G (2002) Golgi architecture and inheritance. Annu Rev Cell Dev Biol 18:379–420. https://doi.org/10.1146/annurev.cellbio.18.030602.133733

    Article  CAS  Google Scholar 

  2. Lippincott-Schwartz J, Roberts TH, Hirschberg K (2000) Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 16:557–589. https://doi.org/10.1146/annurev.cellbio.16.1.557

    Article  CAS  Google Scholar 

  3. Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14:382–392

    Article  CAS  Google Scholar 

  4. Lowe M (2011) Structural organization of the Golgi apparatus. Curr Opin Cell Biol 23:85–93. https://doi.org/10.1016/J.CEB.2010.10.004

    Article  CAS  Google Scholar 

  5. Mohenhauer HH, Morre DJ (1994) Structure of Golgi apparatus. Protoplasma 180:14–28

    Article  Google Scholar 

  6. Saraste J, Prydz K (2019) A new look at the functional organization of the Golgi ribbon. Front Cell Dev Biol 7. https://doi.org/10.3389/fcell.2019.00171

  7. Yadav S, Puthenveedu MA, Linstedt AD (2012) Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 23:153–165. https://doi.org/10.1016/j.devcel.2012.05.023

    Article  CAS  Google Scholar 

  8. Presley JF, Cole NB, Schroer TA et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85. https://doi.org/10.1038/38001

    Article  CAS  Google Scholar 

  9. Miller PM, Folkmann AW, Maia ARR et al (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11:1069–1080. https://doi.org/10.1038/ncb1920

    Article  CAS  Google Scholar 

  10. Yadav S, Linstedt AD (2011) Golgi positioning. Cold Spring Harb Perspect Biol 3:1–17. https://doi.org/10.1101/cshperspect.a005322

    Article  CAS  Google Scholar 

  11. Egea G, Lázaro-Diéguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18:168–178

    Article  CAS  Google Scholar 

  12. Frye K, Renda F, Fomicheva M et al (2020) Cell cycle-dependent dynamics of the Golgi-centrosome association in motile cells. Cells 9:1069. https://doi.org/10.3390/cells9051069

    Article  CAS  Google Scholar 

  13. Lucocq JM, Warren G (1987) Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J 6(11):3239–3246

    Article  CAS  Google Scholar 

  14. Shima DT, Haldar K, Pepperkok R et al (1997) Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J Cell Biol 137:1211–1228. https://doi.org/10.1083/JCB.137.6.1211

    Article  CAS  Google Scholar 

  15. Sütterlin C, Hsu P, Mallabiabarrena A, Malhotra V (2002) Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109:359–369. https://doi.org/10.1016/S0092-8674(02)00720-1

    Article  Google Scholar 

  16. Lucocq J, Berger EG, Warren G (1989) Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J Cell Biol 109:463–474. https://doi.org/10.1083/jcb.109.2.463

    Article  CAS  Google Scholar 

  17. Guizzunti G, Seemann J (2016) Mitotic Golgi disassembly is required for bipolar spindle formation and mitotic progression. Proc Natl Acad Sci 113:E6590–E6599. https://doi.org/10.1073/PNAS.1610844113

    Article  CAS  Google Scholar 

  18. Warren G, Wickner W (1996) Organelle inheritance. Cell 84:395–400

    Article  CAS  Google Scholar 

  19. She Z-Y, Pan M-Y, Tan F-Q, Yang W-X (2017) Minus end-directed kinesin-14 KIFC1 regulates the positioning and architecture of the Golgi apparatus. Oncotarget 8:36469–36483. https://doi.org/10.18632/oncotarget.16863

    Article  Google Scholar 

  20. Barretta ML, Spano D, D’Ambrosio C et al (2016) Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun 7:11727. https://doi.org/10.1038/ncomms11727

    Article  CAS  Google Scholar 

  21. Colanzi A, Hidalgo Carcedo C, Persico A et al (2007) The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 26:2465–2476. https://doi.org/10.1038/sj.emboj.7601686

    Article  CAS  Google Scholar 

  22. Hieda M, Matsumoto T, Isobe M et al (2021) The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 11:5358. https://doi.org/10.1038/s41598-021-84750-4

    Article  CAS  Google Scholar 

  23. Hurtado L, Caballero C, Gavilan MP et al (2011) Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J Cell Biol 193:917–933. https://doi.org/10.1083/jcb.201011014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) grants R35-GM127098 (to I.K.), R01-DK106228 (to I.K.), and R35-GM130298 (to A.K.). K.B.F. was supported by an NIH training grant R25-GM062459 “Initiative for Maximize Student Diversity” (Sealy, PI). We utilized the Flow Cytometry Shared Resource supported by the Vanderbilt Ingram Cancer Center for cell sorting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kaverina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frye, K.B., Zhu, X., Khodjakov, A., Kaverina, I. (2023). Unbiased Quantification of Golgi Scattering and Golgi–Centrosome Association. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics