Skip to main content

Advertisement

Log in

Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Original data for this article are available on request from aviva.levina@sydney.edu.au.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Brozovic A (2016) The relationship between platinum drug resistance and epithelial–mesenchymal transition. Arch Toxicol 91(2):605–619. https://doi.org/10.1007/s00204-016-1912-7

    Article  CAS  PubMed  Google Scholar 

  3. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Han S, Li Y, Liu Y, Zhang D, Li Y, Zhang J (2017) MicroRNA-20A contributes to cisplatin-resistance and migration of OVCAR3 ovarian cancer cell line. Oncol Lett 14(2):1780–1786. https://doi.org/10.3892/ol.2017.6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aldossary SA (2019) Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J 12(1):07–15. https://doi.org/10.13005/bpj/1608

    Article  CAS  Google Scholar 

  6. Denoyer D, Masaldan S, La Fontaine S, Cater MA (2015) Targeting copper in cancer therapy: ‘copper that cancer. Metallomics 7(11):1459–1476. https://doi.org/10.1039/c5mt00149h

    Article  CAS  PubMed  Google Scholar 

  7. Bompiani KM, Tsai C-Y, Achatz FP, Liebig JK, Howell SB (2016) Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. Metallomics 8(9):951–962. https://doi.org/10.1039/c6mt00076b

    Article  CAS  PubMed  Google Scholar 

  8. Akerfeldt MC, Tran CM-N, Shen C, Hambley TW, New EJ (2017) Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J Biol Inorg Chem 22(5):765–774. https://doi.org/10.1007/s00775-017-1467-y

    Article  CAS  PubMed  Google Scholar 

  9. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183. https://doi.org/10.1016/j.jconrel.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  10. Kirsipuu T, Zadorožnaja A, Smirnova J, Friedemann M, Plitz T, Tõugu V, Palumaa P (2020) Copper(II)-binding equilibria in human blood. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-62560-4

    Article  CAS  Google Scholar 

  11. Eid C, Hémadi M, Ha-Duong N.-T, El Hage Chahine J.-M (2014) Iron uptake and transfer from ceruloplasmin to transferrin. Biochimica et Biophysica Acta (BBA) General Subjects 1840(6):771–1781. https://doi.org/10.1016/j.bbagen.2014.01.011

  12. Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Arch Eur J Physiol 472(10):1415–1429. https://doi.org/10.1007/s00424-020-02412-2

    Article  CAS  Google Scholar 

  13. Li Y-Q, Yin J-Y, Liu Z-Q, Li X-P (2018) Copper efflux transporters ATP7A and ATP7B: novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life 70(3):183–191. https://doi.org/10.1002/iub.1722

    Article  CAS  PubMed  Google Scholar 

  14. Ariöz C, Wittung-Stafshede P (2018) Folding of copper proteins: role of the metal? Q Rev Biophys 51:E4. https://doi.org/10.1017/S0033583518000021

    Article  PubMed  Google Scholar 

  15. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57(9):386–398

    Article  CAS  PubMed  Google Scholar 

  16. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1(6):1125–1142. https://doi.org/10.4155/fmc.09.84.Human

    Article  CAS  PubMed  Google Scholar 

  17. Dmitriev OY (2011) Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7B. Biochem Cell Biol 89(2):138–147. https://doi.org/10.1139/O10-150

    Article  CAS  PubMed  Google Scholar 

  18. Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17(6):574–583. https://doi.org/10.1016/j.ccr.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harrach S, Ciarimboli G (2015) Role of transporters in the distribution of platinum-based drugs. Front Pharmacol 24(6):85. https://doi.org/10.3389/fphar.2015.00085

    Article  CAS  Google Scholar 

  20. New EJ (2013) Tools to study distinct metal pools in biology. Dalton Trans 42(9):3210–3219. https://doi.org/10.1039/c2dt31933k

    Article  CAS  PubMed  Google Scholar 

  21. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805–808. https://doi.org/10.1126/science.284.5415.805

    Article  CAS  PubMed  Google Scholar 

  22. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601. https://doi.org/10.1021/cr400546e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cotruvo JA Jr, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44(13):4400–4414. https://doi.org/10.1039/c4cs00346b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fahrni CJ (2013) Synthetic fluorescent probes for monovalent copper. Curr Opin Chem Biol 17(4):656–662. https://doi.org/10.1016/j.cbpa.2013.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen C, Kolanowski JL, Tran CM-N, Kaur A, Akerfeldt MC, Rahme MS, Hambley TW, New EJ (2016) A ratiometric fluorescent sensor for the mitochondrial copper pool. Metallomics 8(9):915–919. https://doi.org/10.1039/x0xx00000x

    Article  CAS  PubMed  Google Scholar 

  26. Park S-H, Kwon N, Lee J-H, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49(1):143–179. https://doi.org/10.1039/c9cs00243j

    Article  CAS  PubMed  Google Scholar 

  27. Comsa E, Nguyen K-A, Loghin F, Boumendjel A, Peuchmaur M, Andrieu T, Falson P (2018) Ovarian cancer cells cisplatin sensitization agents selected by mass cytometry target ABCC2 inhibition. Future Med Chem 10(11):1349–1360. https://doi.org/10.4155/fmc-2017-0308

    Article  CAS  PubMed  Google Scholar 

  28. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo Y, Rochdi M, Howell SB (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Can Res 62(22):6559–6565

    CAS  Google Scholar 

  29. Schuldes H, Bade S, Knobloch J, Jonas D (1997) Loss of in vitro cytotoxicity of cisplatin after storage as stock solution in cell culture medium at various temperatures. Cancer 79(9):1723–1728. https://doi.org/10.1002/(SICI)1097-0142(19970501)79:9%3c1723::AID-CNCR13%3e3.0.CO;2-%23

    Article  CAS  PubMed  Google Scholar 

  30. Han SB, Shin YJ, Hyon JY, Wee WR (2011) Cytotoxicity of voriconazole on cultured human corneal endothelial cells. Antimicrob Agents Chemother 55(10):4519–4523. https://doi.org/10.1128/AAC.00569-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai L, Qin X, Xu Z, Song Y, Jiang H, Wu Y, Ruan H, Chen J (2019) Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 Method. ACS Omega 4(7):12036–12042. https://doi.org/10.1021/acsomega.9b01142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levina A, Crans DC, Lay PA (2017) Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 352:473–498. https://doi.org/10.1016/j.ccr.2017.01.002

    Article  CAS  Google Scholar 

  33. Levina A, Lay PA (2020) Vanadium(V/IV)–transferrin binding disrupts the transferrin cycle and reduces vanadium uptake and antiproliferative activity in human lung cancer cells. Inorg Chem 59(22):16143–16153. https://doi.org/10.1021/acs.inorgchem.0c00926

    Article  CAS  PubMed  Google Scholar 

  34. Levina A, Pham TH, Lay PA (2016) Binding of chromium(III) to transferrin could be involved in detoxification of dietary chromium(III) rather than transport of an essential trace element. Angew Chem 128(28):8236–8239. https://doi.org/10.1002/ange.201602996

    Article  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  36. Fanglian H (2011) Bradford protein assay. Bio-Protoc 1(6):e45. https://doi.org/10.21769/BioProtoc.e45

    Article  Google Scholar 

  37. Shen C (2017) Fluorescent strategies to study the labile copper pool. PhD Thesis, The University of Sydney

  38. Kamlund S, Janicke B, Alm K, Judson-Torres RL, Oredsson S (2020) Quantifying the rate, degree, and heterogeneity of morphological change during an epithelial to mesenchymal transition using digital holographic cytometry. Appl Sci 10(14):4726. https://doi.org/10.3390/app10144726

    Article  Google Scholar 

  39. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12(1):91. https://doi.org/10.1186/1471-2407-12-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma S, Tan W, Du B, Liu W, Li W, Che D, Zhang G (2016) Oridonin effectively reverses cisplatin drug resistance in human ovarian cancer cells via induction of cell apoptosis and inhibition of matrix metalloproteinase expression. Mol Med Rep 13(4):3342–3348. https://doi.org/10.3892/mmr.2016.4897

    Article  CAS  PubMed  Google Scholar 

  41. Sarwar S, Alamro AA, Alghamdi AA, Naeem K, Ullah S, Arif M, Yu JQ, Huq F (2021) Enhanced accumulation of cisplatin in ovarian cancer cells from combination with wedelolactone and resulting inhibition of multiple epigenetic drivers. Drug Des Dev Ther 15:2211–2227. https://doi.org/10.2147/DDDT.S288707

    Article  Google Scholar 

  42. Corte Rodríguez M, Álvarez-Fernández García R, Blanco E, Bettmer J, Montes-Bayón M (2017) Quantitative evaluation of cisplatin uptake in sensitive and resistant individual cells by single-cell ICP-MS (SC-ICP-MS). Anal Chem 89(21):11491–11497. https://doi.org/10.1021/acs.analchem.7b02746

    Article  CAS  PubMed  Google Scholar 

  43. Lee RF, Riedel T, Escrig S, Maclachlan C, Knott GW, Davey CA, Johnsson K, Meibom A, Dyson PJ (2017) Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics 9(10):1413–1420. https://doi.org/10.1039/c7mt00153c

    Article  CAS  PubMed  Google Scholar 

  44. Safaei R, Holzer AK, Katano K, Samimi G, Howell SB (2004) The role of copper transporters in the development of resistance to Pt drugs. J Inorg Biochem 98(10):1607–1613. https://doi.org/10.1016/j.jinorgbio.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  45. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, Goodman M, Howell SB (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10(14):4661–4669. https://doi.org/10.1158/1078-0432.CCR-04-0137

    Article  CAS  PubMed  Google Scholar 

  46. Guttmann S, Chandhok G, Groba SR, Niemietz C, Sauer V, Gomes A, Ciarimboli G, Karst U, Zibert A, Schmidt HH (2017) Organic cation transporter 3 mediates cisplatin and copper cross-resistance in Hepatoma cells. Oncotarget 9(1):743–754. https://doi.org/10.18632/oncotarget.23142

    Article  PubMed  PubMed Central  Google Scholar 

  47. Safaei R, Katano K, Samimi G, Naerdemann W, Stevenson JL, Rochdi M, Howell SB (2004) Cross-resistance to cisplatin in cells with acquired resistance to copper. Cancer Chemother Pharmacol 53(3):239–246. https://doi.org/10.1007/s00280-003-0736-3

    Article  CAS  PubMed  Google Scholar 

  48. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter ctr1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62(5):1154–1159. https://doi.org/10.1124/mol.62.5.1154

    Article  CAS  PubMed  Google Scholar 

  49. Safaei R, Howell SB (2006) Regulation of the cellular pharmacology and cytotoxicity of cisplatin by copper transporters. Cancer Drug Discov Dev. https://doi.org/10.1007/978-1-59745-035-5_17

    Article  Google Scholar 

  50. Mishima M, Samimi G, Kondo A, Lin X, Howell SB (2002) The cellular pharmacology of oxaliplatin resistance. Eur J Cancer 38(10):1405–1412. https://doi.org/10.1016/S0959-8049(02)00096-5

    Article  CAS  PubMed  Google Scholar 

  51. Aqil F, Jeyabalan J, Agrawal AK, Kyakulaga A-H, Munagala R, Parker L, Gupta RC (2017) Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct 8(11):4100–4107. https://doi.org/10.1039/c7fo00882a

    Article  CAS  PubMed  Google Scholar 

  52. De A, De A, Sharma R, Suo W, Sharma M (2020) Sensitization of carboplatinum- and taxol-resistant high-grade serous ovarian cancer cells carrying p53, BRCA1/2 mutations by Emblica officinalis (AMLA) via multiple targets. J Cancer 11(7):1927–1939. https://doi.org/10.7150/jca.36919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Witting PK, Harris HH, Rayner BS, Aitken JB, Dillon CT, Stocker R, Lai B, Cai Z, Lay PA (2006) The endothelium-derived hyperpolarizing factor, H2O2, promotes metal-ion efflux in aortic endothelial cells: elemental mapping by a hard X-ray microscope. Biochemistry 45:12500–12509. https://doi.org/10.1021/bi0604375

    Article  CAS  PubMed  Google Scholar 

  54. Santin G, Scietti L, Veneroni P, Barni S, Bernocchi G, Bottone MG (2012) Effects of cisplatin in neuroblastoma rat cells: damage to cellular organelles. Int J Cell Biol 2012:1–6. https://doi.org/10.1155/2012/424072

    Article  CAS  Google Scholar 

  55. Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK (2016) Regulating subcellular metal homeostasis: the key to crop improvement. Front Plant Sci 7:1192. https://doi.org/10.3389/fpls.2016.01192

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dodani SC, Firl A, Chan J, Nam CI, Aron AT, Onak CS, Ramos-Torres KM, Paek J, Webster CM, Feller MB, Chang CJ (2014) Copper is an endogenous modulator of neural circuit spontaneous activity. Proc Natl Acad Sci 111(46):16280–16285. https://doi.org/10.1073/pnas.1409796111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li S, Zhang J, Yang H, Wu C, Dang X, Liu Y (2015) Copper depletion inhibits cocl2-induced aggressive phenotype of MCF-7 cells via downregulation of HIF-1 and inhibition of snail/twist-mediated epithelial-mesenchymal transition. Sci Rep 5(1):12410. https://doi.org/10.1038/srep12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng X, Cheng W, Ji C, Zhang J, Yin M (2020) Detection of metal ions in biological systems: a review. Rev Anal Chem 39(1):231–246. https://doi.org/10.1515/revac-2020-0118

    Article  CAS  Google Scholar 

  59. Weekley CM, He C (2017) Developing drugs targeting transition metal homeostasis. Curr Opin Chem Biol 37:26–32. https://doi.org/10.1016/j.cbpa.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  60. Prohaska JR (2008) Role of copper transporters in copper homeostasis. Am J Clin Nutr 88(3):826S-829S. https://doi.org/10.1093/ajcn/88.3.826S

    Article  CAS  PubMed  Google Scholar 

  61. Dean KM, Qin Y, Palmer AE (2012) Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochim Biophys Acta (BBA) Mol Cell Res 1823(9):1406–1415. https://doi.org/10.1016/j.bbamcr.2012.04.001

    Article  CAS  Google Scholar 

  62. Kilari D (2016) Role of copper transporters in platinum resistance. World J Clin Oncol 7(1):106. https://doi.org/10.5306/wjco.v7.i1.106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ghezzi AR, Aceto M, Cassino C, Gabano E, Osella D (2004) Uptake of antitumor platinum(ii)-complexes by cancer cells, assayed by inductively coupled plasma mass spectrometry (ICP-MS). J Inorg Biochem 98(1):73–78. https://doi.org/10.1016/j.jinorgbio.2003.08.014

    Article  CAS  PubMed  Google Scholar 

  64. Kuo MT, Chen HH, Song I-S, Savaraj N, Ishikawa T (2007) The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 26(1):71–83. https://doi.org/10.1007/s10555-007-9045-3

    Article  CAS  PubMed  Google Scholar 

  65. Song I-S, Savaraj N, Siddik ZH, Liu P, Wei Y, Wu CJ, Kuo MT (2004) Role of human copper transporter CTR1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3(12):1543–1549

    Article  CAS  PubMed  Google Scholar 

  66. Kalayda GV, Wagner CH, Jaehde U (2012) Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J Inorg Biochem 116:1–10. https://doi.org/10.1016/j.jinorgbio.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  67. Li Z-H, Zheng R, Chen J-T, Jia J, Qiu M (2016) The role of copper transporter ATP7A in platinum-resistance of esophageal squamous cell cancer (ESCC). J Cancer 7(14):2085–2092. https://doi.org/10.7150/jca.16117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Komatsu M, Sumizawa T, Mutoh M, Chen Z, Terada K, Furukawa T, Yang X, Gao H, Miura N, Sugiyama T, Akiyama S-I (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Can Res 60(5):1312–1316

    CAS  Google Scholar 

  69. Hudson LG, Zeineldin R, Stack MS (2008) Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metas 25(6):643–655. https://doi.org/10.1007/s10585-008-9171-5

    Article  CAS  Google Scholar 

  70. Wang P, Zhou R, Thomas P, Zhao L, Zhou R, Mandal S, Jolly M, Richard D, Rehm B, Ostrikov K, Dai X, Williams E, Thompson E (2021) Epithelial-to-mesenchymal transition enhances cancer cell sensitivity to cytotoxic effects of cold atmospheric plasmas in breast and bladder cancer systems. Cancers 13(12):2889. https://doi.org/10.3390/cancers13122889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petruzzelli R, Polishchuk RS (2019) Activity and trafficking of copper-transporting ATPases in tumor development and defence against platinum-based drugs. Cells 8(9):1080. https://doi.org/10.3390/cells8091080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Holzer AK, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell SB (2004) The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 66(4):817–823. https://doi.org/10.1124/mol.104.001198

    Article  CAS  PubMed  Google Scholar 

  73. Morgan MT, Bourassa D, Harankhedkar S, McCallum AM, Zlatic SA, Calvo JS, Meloni G, Faundez V, Fahrni CJ (2019) Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci 116(25):12167–12172. https://doi.org/10.1073/pnas.1900172116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chung CY-S, Posimo JM, Lee S, Tsang T, Davis JM, Brady DC, Chang CJ (2019) Activity-based ratiometric fret probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc Natl Acad Sci 116(37):18285–18294. https://doi.org/10.1073/pnas.1904610116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen C, New EJ (2015) What has fluorescent sensing told us about copper and brain malfunction? Metallomics 7(1):56–65. https://doi.org/10.1039/C4MT00288A

    Article  CAS  PubMed  Google Scholar 

  76. Bárány E, Bergdahl IA, Bratteby L-E, Lundh T, Samuelson G, Schütz A, Skerfving S, Oskarsson A (2002) Trace element levels in whole blood and serum from Swedish adolescents. Sci Total Environ 286(1–3):129–141. https://doi.org/10.1016/S0048-9697(01)00970-6

    Article  PubMed  Google Scholar 

  77. Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci 108(15):5980–5985. https://doi.org/10.1073/pnas.1009932108

    Article  PubMed  PubMed Central  Google Scholar 

  78. Perez RP (1998) Cellular and molecular determinants of cisplatin resistance. Eur J Cancer 34(10):1535–1542. https://doi.org/10.1016/s0959-8049(98)00227-5

    Article  CAS  PubMed  Google Scholar 

  79. Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L (2020) The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol 11:343. https://doi.org/10.3389/fphar.2020.00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Luca A, Parker LJ, Ang WH, Rodolfo C, Gabbarini V, Hancock NC, Palone F, Mazzetti AP, Menin L, Morton CJ, Parker MW, Lo Bello M, Dyson PJ (2019) A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1–1. Proc Natl Acad Sci 116(28):13943–13951. https://doi.org/10.1073/pnas.1903297116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuo MT, Huang Y-F, Chou C-Y, Chen HH (2021) Targeting the copper transport system to improve treatment efficacies of platinum-containing drugs in cancer chemotherapy. Pharmaceuticals 14(6):549. https://doi.org/10.3390/ph14060549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. New EJ, Wimmer VC, Hare DJ (2018) Promises and pitfalls of metal imaging in biology. Cell Chem Biol 25(1):7–18. https://doi.org/10.1016/j.chembiol.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  83. Zhu J, Yeo JH, Bowyer AA, Proschogo N, New EJ (2020) Studies of the labile lead pool using a rhodamine-based fluorescent probe. Metallomics 12(5):644–648. https://doi.org/10.1039/d0mt00056f

    Article  CAS  PubMed  Google Scholar 

  84. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, Senz J, Yang W, Spillman MA, Cochrane DR, Shumansky K, Shah SP, Kalloger SE, Huntsman DG (2013) Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE 8(9):e72162. https://doi.org/10.1371/journal.pone.0072162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for Australian Centre for Microscopy and Microanalysis (ACMM) especially Dr Gerald Shami and Dr Yingying Su for assistance with cell culture and confocal microscopy, Bosch Molecular Biology facility at the University of Sydney for IncuCyte experiments, Em. Prof. Trevor W. Hambley for providing A2780 and A2780.CisR cells, Dr Clara Shen for providing InCCu1 probe, Dr Jia Hao Yeo for confocal microscopy training, and Dr Nicholas Proschogo for ICP-MS measurements.

Funding

We are grateful for financial supported by Australian Research Council (ARC, DP160104172), that helped fund this research and to the Chemistry Department, Jazan University, Kingdom of Saudi Arabia for a PhD scholarship (SMA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth J. New or Peter A. Lay.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 938 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed Asiri, S., Levina, A., New, E.J. et al. Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 28, 43–55 (2023). https://doi.org/10.1007/s00775-022-01978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01978-9

Keywords

Navigation