Skip to main content

Calcium Sensors of Neurotransmitter Release

  • Chapter
  • First Online:
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 33))

  • 606 Accesses

Abstract

Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthew WD, Tsavaler L, Reichardt LF. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol. 1981;91:257–69. https://doi.org/10.1083/jcb.91.1.257.

    Article  CAS  PubMed  Google Scholar 

  2. Brose N, Petrenko AG, Sudhof TC, Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 1992;256:1021–5. https://doi.org/10.1126/science.1589771.

    Article  CAS  PubMed  Google Scholar 

  3. Davletov BA, Sudhof TC. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem. 1993;268:26386–90. https://doi.org/10.1016/s0021-9258(19)74326-9.

    Article  CAS  PubMed  Google Scholar 

  4. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994;79:717–27. https://doi.org/10.1016/0092-8674(94)90556-8.

    Article  CAS  PubMed  Google Scholar 

  5. Perin MS, Brose N, Jahn R, Sudhof TC. Domain structure of synaptotagmin (p65). J Biol Chem. 1991;266:623–9. https://doi.org/10.1016/s0021-9258(18)52480-7.

    Article  CAS  PubMed  Google Scholar 

  6. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature. 1990;345:260–3. https://doi.org/10.1038/345260a0.

    Article  CAS  PubMed  Google Scholar 

  7. Perin MS, Johnston PA, Ozcelik T, Jahn R, Francke U, Sudhof TC. Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J Biol Chem. 1991;266:615–22. https://doi.org/10.1016/s0021-9258(18)52479-0.

    Article  CAS  PubMed  Google Scholar 

  8. Nishiki TI, Augustine GJ. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J Neurosci. 2004;24:8542–50. https://doi.org/10.1523/JNEUROSCI.2545-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee J, Guan Z, Akbergenova Y, Troy Littleton J. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J Neurosci. 2013;33:187–200. https://doi.org/10.1523/JNEUROSCI.3214-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wen H, Linhoff MW, McGinley MJ, Li GL, Corson GM, Mandel G, et al. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc Natl Acad Sci U S A. 2010;107:13906–11. https://doi.org/10.1073/pnas.1008598107.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li L, Liu H, Krout M, Richmond JE, Wang Y, Bai J, et al. A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release. J Cell Biol. 2021;220:e202008121. https://doi.org/10.1083/JCB.202008121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Liu H, Wang W, Chandra M, Collins BM, Hu Z. SNT-1 functions as the Ca2+ sensor for tonic and evoked neurotransmitter release in caenorhabditis elegans. J Neurosci. 2018;38:5313–24. https://doi.org/10.1523/JNEUROSCI.3097-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol. 2020;63:198–209. https://doi.org/10.1016/j.conb.2020.04.006.

    Article  CAS  PubMed  Google Scholar 

  14. Courtney NA, Briguglio JS, Bradberry MM, Greer C, Chapman ER. Excitatory and inhibitory neurons utilize different Ca2+ sensors and sources to regulate spontaneous release. Neuron. 2018;98:977–91.e5. https://doi.org/10.1016/j.neuron.2018.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pang ZP, Bacaj T, Yang X, Zhou P, Xu W, Südhof TC. Doc2 supports spontaneous synaptic transmission by a Ca2+-independent mechanism. Neuron. 2011;70:244–51. https://doi.org/10.1016/j.neuron.2011.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao J, Gaffaney JD, Kwon SE, Chapman ER. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell. 2011;147:666–77. https://doi.org/10.1016/j.cell.2011.09.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986;233:859–66. https://doi.org/10.1126/science.3755548.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez I, Araç D, Ubach J, Gerber SH, Shin O, Gao Y, et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron. 2001;32:1057–69. https://doi.org/10.1016/S0896-6273(01)00548-7.

    Article  CAS  PubMed  Google Scholar 

  19. Shao X, Fernandez I, Südhof TC, Rizo J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry. 1998;37:16106–15. https://doi.org/10.1021/bi981789h.

    Article  CAS  PubMed  Google Scholar 

  20. Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 1995;80:929–38. https://doi.org/10.1016/0092-8674(95)90296-1.

    Article  CAS  PubMed  Google Scholar 

  21. Sutton RB, Ernst JA, Brunger AT. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III: implications for Ca+2-independent SNARE complex interaction. J Cell Biol. 1999;147:589–98. https://doi.org/10.1083/jcb.147.3.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ubach J, Zhang X, Shao X, Südhof TC, Rizo J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 1998;17:3921–30. https://doi.org/10.1093/emboj/17.14.3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, et al. Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution. Nat Struct Mol Biol. 2015;22:555–64. https://doi.org/10.1038/nsmb.3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voleti R, Jaczynska K, Rizo J. Ca2+-dependent release of synaptotagmin-1 from the snare complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. elife. 2020;9:1–95. https://doi.org/10.7554/ELIFE.57154.

    Article  Google Scholar 

  25. Wang S, Li Y, Ma C. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. elife. 2016;5:209–17. https://doi.org/10.7554/eLife.14211.

    Article  CAS  Google Scholar 

  26. Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, et al. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature. 2015;525:62–7. https://doi.org/10.1038/nature14975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol. 2014;76:333–63. https://doi.org/10.1146/annurev-physiol-021113-170338.

    Article  CAS  PubMed  Google Scholar 

  28. Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci. 2015;16:5–16. https://doi.org/10.1038/nrn3875.

    Article  CAS  PubMed  Google Scholar 

  29. Maximov A, Südhof TC. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron. 2005;48:547–54. https://doi.org/10.1016/j.neuron.2005.09.006.

    Article  CAS  PubMed  Google Scholar 

  30. Atluri PP, Regehr WG. Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci. 1998;18:8214–27. https://doi.org/10.1523/jneurosci.18-20-08214.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrett EF, Stevens CF. The kinetics of transmitter release at the frog neuromuscular junction. J Physiol. 1972;227:691–708. https://doi.org/10.1113/jphysiol.1972.sp010054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goda Y, Stevens CF. Two components of transmitter release at a central synapse. Proc Natl Acad Sci U S A. 1994;91:12942–6. https://doi.org/10.1073/pnas.91.26.12942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zengel JE, Magleby KL. Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction. J Gen Physiol. 1980;76:175–211. https://doi.org/10.1085/jgp.76.2.175.

    Article  CAS  PubMed  Google Scholar 

  34. Best AR, Regehr WG. Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA. Neuron. 2009;62:555–65. https://doi.org/10.1016/j.neuron.2009.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daw MI, Tricoire L, Erdelyi F, Szabo G, McBain CJ. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J Neurosci. 2009;29:11112–22. https://doi.org/10.1523/JNEUROSCI.5760-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iremonger KJ, Bains JS. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J Neurosci. 2007;27:6684–91. https://doi.org/10.1523/JNEUROSCI.0934-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Labrakakis C, Lorenzo LE, Bories C, Ribeiro-da-Silva A, De Koninck Y. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn. Mol Pain. 2009;5:1744–8069. https://doi.org/10.1186/1744-8069-5-24.

    Article  CAS  Google Scholar 

  38. Sugita S, Shin OH, Han W, Lao Y, Südhof TC. Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. EMBO J. 2002;21:270–80. https://doi.org/10.1093/emboj/21.3.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Mashimo T, Südhof TC. Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron. 2007;54:567–81. https://doi.org/10.1016/j.neuron.2007.05.004.

    Article  CAS  PubMed  Google Scholar 

  40. Hagler DJ, Goda Y. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J Neurophysiol. 2001;85:2324–34. https://doi.org/10.1152/jn.2001.85.6.2324.

    Article  CAS  PubMed  Google Scholar 

  41. Otsu Y, Shahrezaei V, Li B, Raymond LA, Delaney KR, Murphy TH. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J Neurosci. 2004;24:420–33. https://doi.org/10.1523/JNEUROSCI.4452-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang H, Xu-Friedman MA. Developmental mechanisms for suppressing the effects of delayed release at the endbulb of held. J Neurosci. 2010;30:11466–75. https://doi.org/10.1523/JNEUROSCI.2300-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, et al. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron. 2013;80:947–59. https://doi.org/10.1016/j.neuron.2013.10.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fatt P, Katz B. Some observations on biological noise. Nature. 1950;166:597–8. https://doi.org/10.1038/166597a0.

    Article  CAS  PubMed  Google Scholar 

  45. Andreae LC, Burrone J. Spontaneous neurotransmitter release shapes dendritic arbors via long-range activation of NMDA receptors. Cell Rep. 2015;10:873–82. https://doi.org/10.1016/j.celrep.2015.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Banerjee S, Vernon S, Jiao W, Choi BJ, Ruchti E, Asadzadeh J, et al. Miniature neurotransmission is required to maintain Drosophila synaptic structures during ageing. Nat Commun. 2021;12:1–12. https://doi.org/10.1038/s41467-021-24490-1.

    Article  CAS  Google Scholar 

  47. Huntwork S, Littleton JT. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci. 2007;10:1235–7. https://doi.org/10.1038/nn1980.

    Article  CAS  PubMed  Google Scholar 

  48. Alten B, Zhou Q, Shin O-H, Esquivies L, Lin P-Y, White KI, et al. Role of aberrant spontaneous neurotransmission in SNAP25-associated encephalopathies. Neuron. 2020;109:59–72. https://doi.org/10.1016/j.neuron.2020.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–6. https://doi.org/10.1038/nature10130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goswami SP, Bucurenciu I, Jonas P. Miniature IPSCs in hippocampal granule cells are triggered by voltage-gated Ca2+ channels via microdomain coupling. J Neurosci. 2012;32:14294–304. https://doi.org/10.1523/JNEUROSCI.6104-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR, et al. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci. 2005;25:6745–54. https://doi.org/10.1523/JNEUROSCI.1730-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams C, Chen W, Lee CH, Yaeger D, Vyleta NP, Smith SM. Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA. Nat Neurosci. 2012;15:1195–7. https://doi.org/10.1038/nn.3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu J, Pang ZP, Shin O-H, Südhof TC. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci. 2009;12:759–66. https://doi.org/10.1038/nn.2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, et al. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron. 2021;109:1314–32.e5. https://doi.org/10.1016/j.neuron.2021.02.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Groffen AJ, Martens S, Arazola RD, Cornelisse LN, Lozovaya N, De Jong APH, et al. Doc2b is a high-affinity Ca2+sensor for spontaneous neurotransmitter release. Science. 2010;327:1614–8. https://doi.org/10.1126/science.1183765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu H, Dean C, Arthur CP, Dong M, Chapman ER. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J Neurosci. 2009;29:7395–403. https://doi.org/10.1523/JNEUROSCI.1341-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Südhof TC. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature. 2007;450:676–82. https://doi.org/10.1038/nature06308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wierda KDB, Sørensen JB. Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1. J Neurosci. 2014;34:2100–10. https://doi.org/10.1523/JNEUROSCI.3934-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Orita S, Sasaki T, Naito A, Komuro R, Ohtsuka T, Maeda M, et al. Doc2: a novel brain protein having two repeated C2-like domains. Biochem Biophys Res Commun. 1995;206:439–48. https://doi.org/10.1006/bbrc.1995.1062.

    Article  CAS  PubMed  Google Scholar 

  60. Verhage M, De Vries KJ, Røshol H, Burbach JPH, Gispen WH, Südhof TC. DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron. 1997;18:453–61. https://doi.org/10.1016/S0896-6273(00)81245-3.

    Article  CAS  PubMed  Google Scholar 

  61. Groffen AJA, Friedrich R, Brian EC, Ashery U, Verhage M. DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem. 2006;97:818–33. https://doi.org/10.1111/j.1471-4159.2006.03755.x.

    Article  CAS  PubMed  Google Scholar 

  62. Davletov B, Perisic O, Williams RL. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J Biol Chem. 1998;273:19093–6. https://doi.org/10.1074/jbc.273.30.19093.

    Article  CAS  PubMed  Google Scholar 

  63. Chapman ER, Davis AF. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J Biol Chem. 1998;273:13995–4001. https://doi.org/10.1074/jbc.273.22.13995.

    Article  CAS  PubMed  Google Scholar 

  64. Shao X, Li C, Fernandez I, Zhang X, Südhof TC, Rizo J. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron. 1997;18:133–42. https://doi.org/10.1016/S0896-6273(01)80052-0.

    Article  CAS  PubMed  Google Scholar 

  65. Rizo J, Sudhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem (Elsevier). 1998;273:15879–82.

    Article  CAS  Google Scholar 

  66. Bai J, Tucker WC, Chapman ER. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol. 2004;11:36–44. https://doi.org/10.1038/nsmb709.

    Article  PubMed  Google Scholar 

  67. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol. 2010;17:318–24. https://doi.org/10.1038/nsmb.1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001;410:41–9. https://doi.org/10.1038/35065004.

    Article  PubMed  Google Scholar 

  69. Hui E, Bai J, Wang P, Sugimori M, Llinas RR, Chapman ER. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. Proc Natl Acad Sci U S A. 2005;102:5210–4. https://doi.org/10.1073/pnas.0500941102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kochubey O, Schneggenburger R. Synaptotagmin increases the dynamic range of synapses by driving Ca2+-evoked release and by clamping a near-linear remaining Ca2+ sensor. Neuron. 2011;69:736–48. https://doi.org/10.1016/J.NEURON.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  71. Kuo W, Herrick DZ, Ellena JF, Cafiso DS. The calcium-dependent and calcium-independent membrane binding of synaptotagmin 1: two modes of C2B binding. J Mol Biol. 2009;387:284. https://doi.org/10.1016/J.JMB.2009.01.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pérez-Lara Á, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P, Tietzel M, et al. PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. elife. 2016;5:115–8. https://doi.org/10.7554/eLife.15886.

    Article  CAS  Google Scholar 

  73. Vrljic M, Strop P, Hill RC, Hansen KC, Chu S, Brunger AT. Post-translational modifications and lipid binding profile of insect cell-expressed full-length mammalian synaptotagmin 1. Biochemistry. 2011;50:9998–10012. https://doi.org/10.1021/bi200998y.

    Article  CAS  PubMed  Google Scholar 

  74. Giladi M, Michaeli L, Almagor L, Bar-On D, Buki T, Ashery U, et al. The C2B domain is the primary Ca2+ sensor in DOC2B: a structural and functional analysis. J Mol Biol. 2013;425:4629–41. https://doi.org/10.1016/j.jmb.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, Rizo J, Südhof TC. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry. 1998;37:12395–403. https://doi.org/10.1021/bi9807512.

    Article  CAS  PubMed  Google Scholar 

  76. Bai J, Earles CA, Lewis JL, Chapman ER. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J Biol Chem. 2000;275:25427–35. https://doi.org/10.1074/jbc.M906729199.

    Article  CAS  PubMed  Google Scholar 

  77. Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. Kinetics of synaptotagmin responses to CA2+ and assembly with the core SNARE complex onto membranes. Neuron. 1999;24:363–76. https://doi.org/10.1016/S0896-6273(00)80850-8.

    Article  CAS  PubMed  Google Scholar 

  78. Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, Krishnakumar SS. Structural basis for the clamping and Ca2+ activation of SNARE-mediated fusion by synaptotagmin. Nat Commun. 2019;10:2413. https://doi.org/10.1038/s41467-019-10391-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hui E, Bai J, Chapman ER. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys J. 2006;91:1767–77. https://doi.org/10.1529/biophysj.105.080325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gerber SH, Rizo J, Südhof TC. Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A-domain from synaptotagmin I. Diabetes. 2002;51:S12–S8. https://doi.org/10.2337/diabetes.51.2007.s12.

    Article  CAS  PubMed  Google Scholar 

  81. Bai J, Wang P, Chapman ER. C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A. 2002;99:1665–70. https://doi.org/10.1073/pnas.032541099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chae YK, Abildgaard F, Chapman ER, Markley JL. Lipid binding ridge on loops 2 and 3 of the C2A domain of synaptotagmin I as revealed by NMR spectroscopy. J Biol Chem. 1998;273:25659–63. https://doi.org/10.1074/jbc.273.40.25659.

    Article  CAS  PubMed  Google Scholar 

  83. Herrick DZ, Sterbling S, Rasch KA, Hinderliter A, Cafiso DS. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry. 2006;45:9668–74. https://doi.org/10.1021/bi060874j.

    Article  CAS  PubMed  Google Scholar 

  84. Rufener E, Frazier AA, Wieser CM, Hinderliter A, Cafiso DS. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry. 2005;44:18–28. https://doi.org/10.1021/bi048370d.

    Article  CAS  PubMed  Google Scholar 

  85. Rhee JS, Li LY, Shin OH, Rah JC, Rizo J, Südhof TC, et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc Natl Acad Sci U S A. 2005;102:18664–9. https://doi.org/10.1073/pnas.0509153102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Araç D, Chen X, Khant HA, Ubach J, Ludtke SJ, Kikkawa M, et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat Struct Mol Biol. 2006;13:209–17. https://doi.org/10.1038/nsmb1056.

    Article  CAS  PubMed  Google Scholar 

  87. Xue M, Ma C, Craig TK, Rosenmund C, Rizo J. The Janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat Struct Mol Biol. 2008;15:1160–8. https://doi.org/10.1038/nsmb.1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bradberry MM, Bao H, Lou X, Chapman ER. Phosphatidylinositol 4,5-bisphosphate drives Ca2-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2. J Biol Chem. 2019;294:10942–53. https://doi.org/10.1074/jbc.RA119.007929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lai Y, Lou X, Diao J, Shin YK. Molecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening. Sci Rep. 2015;5:1–7. https://doi.org/10.1038/srep09267.

    Article  CAS  Google Scholar 

  90. Loewen CA, Lee SM, Shin YK, Reist NE. C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo. Mol Biol Cell. 2006;17:5211–26. https://doi.org/10.1091/mbc.E06-07-0622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park Y, Seo JB, Fraind A, Pérez-Lara A, Yavuz H, Han K, et al. Synaptotagmin-1 binds to PIP 2 -containing membrane but not to SNAREs at physiological ionic strength. Nat Struct Mol Biol. 2015;22:815–23. https://doi.org/10.1038/nsmb.3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Van Bogaart GD, Meyenberg K, Diederichsen U, Jahn R. Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold. J Biol Chem. 2012;287:16447–53. https://doi.org/10.1074/jbc.M112.343418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Borden CR, Stevens CF, Sullivan JM, Zhu Y. Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission. Mol Cell Neurosci. 2005;29:462–70. https://doi.org/10.1016/j.mcn.2005.03.015.

    Article  CAS  PubMed  Google Scholar 

  94. Chang S, Trimbuch T, Rosenmund C. Synaptotagmin-1 drives synchronous Ca2+-triggered fusion by C2B-domain-mediated synaptic-vesicle-membrane attachment. Nat Neurosci. 2018;21:33–42. https://doi.org/10.1038/s41593-017-0037-5.

    Article  CAS  PubMed  Google Scholar 

  95. Liu PW, Hosokawa T, Hayashi Y. Regulation of synaptic nanodomain by liquid–liquid phase separation: a novel mechanism of synaptic plasticity. Curr Opin Neurobiol. 2021;69:84–92. https://doi.org/10.1016/j.conb.2021.02.004.

    Article  CAS  PubMed  Google Scholar 

  96. Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature. 2002;418:340–4. https://doi.org/10.1038/nature00846.

    Article  CAS  PubMed  Google Scholar 

  97. Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 2008;77:615–41. https://doi.org/10.1146/annurev.biochem.77.062005.101135.

    Article  CAS  PubMed  Google Scholar 

  98. Littleton JT, Bai J, Vyas B, Desai R, Baltus AE, Garment MB, et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J Neurosci. 2001;21:1421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, et al. Three-dimensional structure of the complexin/SNARE complex. Neuron. 2002;33:397–409.

    Article  CAS  PubMed  Google Scholar 

  100. Maximov A, Tang J, Yang X, Pang ZP, Südhof TC. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science. 2009;323:516–21. https://doi.org/10.1126/science.1166505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995;83:111–9. https://doi.org/10.1016/0092-8674(95)90239-2.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou Q, Zhou P, Wang AL, Wu D, Zhao M, Südhof TC, et al. The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature. 2017;548:420–5. https://doi.org/10.1038/nature23484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lai Y, Fois G, Flores JR, Tuvim MJ, Zhou Q, Yang K, et al. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature. 2022;603:949–56. https://doi.org/10.1038/s41586-022-04543-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lai Y, Tuvim MJ, Leitz J, Peters J, Pfuetzner RA, Esquivies L, et al. Screening of hydrocarbon-stapled peptides for inhibition of calcium-triggered exocytosis. Front Pharmacol. 2022;13:2022.03.21.484632. https://doi.org/10.3389/fphar.2022.891041.

    Article  CAS  Google Scholar 

  105. Chen C, Satterfield R, Young SM, Jonas P. Triple function of synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses. Cell Rep. 2017;21:2082–9. https://doi.org/10.1016/j.celrep.2017.10.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li YC, Chanaday NL, Xu W, Kavalali ET. Synaptotagmin-1- and synaptotagmin-7-dependent fusion mechanisms target synaptic vesicles to kinetically distinct endocytic pathways. Neuron. 2017;93:616–31.e3. https://doi.org/10.1016/j.neuron.2016.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nyenhuis SB, Karandikar N, Kiessling V, Kreutzberger AJB, Thapa A, Liang B, et al. Conserved arginine residues in synaptotagmin 1 regulate fusion pore expansion through membrane contact. Nat Commun. 2021;12:1–13. https://doi.org/10.1038/s41467-021-21090-x.

    Article  CAS  Google Scholar 

  108. Poskanzer KE, Marek KW, Sweeney ST, Davis GW. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature. 2003;426:559–63. https://doi.org/10.1038/nature02184.

    Article  CAS  PubMed  Google Scholar 

  109. Segovia M, Alés E, Montes AM, Bonifas I, Jemal I, Lindau M, et al. Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A. 2010;107:19032–7. https://doi.org/10.1073/pnas.1014070107.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vevea JD, Kusick GF, Courtney KC, Chen E, Watanabe S, Chapman ER. Synaptotagmin 7 is targeted to the axonal plasma membrane through g-secretase processing to promote synaptic vesicle docking in mouse hippocampal neurons. elife. 2021;10:e67261. https://doi.org/10.7554/eLife.67261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O’shaughnessy B, Karatekin E. The neuronal calcium sensor synaptotagmin-1 and snare proteins cooperate to dilate fusion pores. elife. 2021;10:e68215. https://doi.org/10.7554/eLife.68215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen Y, Wang YH, Zheng Y, Li M, Wang B, Wang QW, et al. Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep. 2021;34:108842. https://doi.org/10.1016/j.celrep.2021.108842.

    Article  CAS  PubMed  Google Scholar 

  113. Schiavo G, Stenbeck G, Rothman JE, Söllner TH. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A. 1997;94:997–1001. https://doi.org/10.1073/pnas.94.3.997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fernández-Chacón R, Shin O-H, Königstorfer A, Matos MF, Meyer AC, Garcia J, et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J Neurosci. 2002;22:8438–46. 22/19/8438 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  115. Paddock BE, Wang Z, Biela LM, Chen K, Getzy MD, Striegel A, et al. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo. J Neurosci. 2011;31:2248–57. https://doi.org/10.1523/JNEUROSCI.3153-09.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Robinson IM, Ranjan R, Schwarz TL. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature. 2002;418:336–40. https://doi.org/10.1038/nature00915.

    Article  CAS  PubMed  Google Scholar 

  117. Stevens CF, Sullivan JM. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron. 2003;39:299–308.

    Article  CAS  PubMed  Google Scholar 

  118. Bai H, Xue R, Bao H, Zhang L, Yethiraj A, Cui Q, et al. Different states of synaptotagmin regulate evoked versus spontaneous release. Nat Commun. 2016;7:10971. https://doi.org/10.1038/ncomms10971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Striegel AR, Biela LM, Evans CS, Wang Z, Delehoy JB, Sutton RB, et al. Calcium binding by synaptotagmin’s C2A domain is an essential element of the electrostatic switch that triggers synchronous synaptic transmission. J Neurosci. 2012;32:1253–60. https://doi.org/10.1523/JNEUROSCI.4652-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yoshihara M, Guan Z, Littleton JT. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc Natl Acad Sci U S A. 2010;107:14869–74. https://doi.org/10.1073/pnas.1000606107.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mohrmann R, De Wit H, Verhage M, Neher E, Sørensen JB. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science. 2010;330:502–5. https://doi.org/10.1126/science.1193134.

    Article  CAS  PubMed  Google Scholar 

  122. Shi L, Shen QT, Kiel A, Wang J, Wang HW, Melia TJ, et al. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science. 2012;335:1355–9. https://doi.org/10.1126/science.1214984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sinha R, Ahmed S, Jahn R, Klingauf J. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc Natl Acad Sci U S A. 2011;108:14318–23. https://doi.org/10.1073/pnas.1101818108.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Van Den Bogaart G, Jahn R. Counting the SNAREs needed for membrane fusion. J Mol Cell Biol. 2011;3:204–5. https://doi.org/10.1093/jmcb/mjr004.

    Article  CAS  PubMed  Google Scholar 

  125. Wang J, Bello O, Auclair SM, Coleman J, Pincet F, Krishnakumar SS, et al. Calcium sensitive ring-like oligomers formed by synaptotagmin. Proc Natl Acad Sci U S A. 2014;111:13966–71. https://doi.org/10.1073/pnas.1415849111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang J, Li F, Bello OD, Sindelar CV, Pincet F, Krishnakumar SS, et al. Circular oligomerization is an intrinsic property of synaptotagmin. elife. 2017;6:e27441. https://doi.org/10.7554/eLife.27441.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zanetti MN, Bello OD, Wang J, Coleman J, Cai Y, Sindelar CV, et al. Ring-like oligomers of synaptotagmins and related C2 domain proteins. elife. 2016;5:e17262. https://doi.org/10.7554/eLife.17262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Radhakrishnan A, Li X, Grushin K, Krishnakumar SS, Liu J, Rothman JE. Symmetrical arrangement of proteins under release-ready vesicles in presynaptic terminals. Proc Natl Acad Sci USA. 2021;118:e2024029118. https://doi.org/10.1073/pnas.2024029118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baker K, Gordon SL, Grozeva D, Van Kogelenberg M, Roberts NY, Pike M, et al. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J Clin Investig. 2015;125:1670–8. https://doi.org/10.1172/JCI79765.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bradberry MM, Courtney NA, Dominguez MJ, Lofquist SM, Knox AT, Sutton RB, et al. Molecular basis for synaptotagmin-1-associated neurodevelopmental disorder. Neuron. 2020;107:52–64.e7. https://doi.org/10.1016/j.neuron.2020.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Melland H, Bumbak F, Kolesnik-Taylor A, Ng-Cordell E, John A, Constantinou P, et al. Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder. Genet Med. 2022;24:880–93. https://doi.org/10.1016/j.gim.2021.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bauché S, Sureau A, Sternberg D, Rendu J, Buon C, Messéant J, et al. New recessive mutations in SYT2 causing severe presynaptic congenital myasthenic syndromes. Neurology. Genetics. 2020;6:e534. https://doi.org/10.1212/NXG.0000000000000534.

    Article  CAS  Google Scholar 

  133. Donkervoort S, Mohassel P, Laugwitz L, Zaki MS, Kamsteeg EJ, Maroofian R, et al. Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. Am J Med Genet A. 2020;182:2272–83. https://doi.org/10.1002/ajmg.a.61765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Herrmann DN, Horvath R, Sowden JE, Gonzalez M, Gonzales M, Sanchez-Mejias A, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9. https://doi.org/10.1016/j.ajhg.2014.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Maselli RA, van der Linden H, Ferns M. Recessive congenital myasthenic syndrome caused by a homozygous mutation in SYT2 altering a highly conserved C-terminal amino acid sequence. Am J Med Genet A. 2020;182:1744–9. https://doi.org/10.1002/ajmg.a.61579.

    Article  CAS  PubMed  Google Scholar 

  136. Mironovich O, Dadali E, Malmberg S, Markova T, Ryzhkova O, Poliakov A. Identification of a novel de novo variant in the syt2 gene causing a rare type of distal hereditary motor neuropathy. Genes. 2020;11:1–8. https://doi.org/10.3390/genes11111238.

    Article  CAS  Google Scholar 

  137. Montes-Chinea NI, Guan Z, Coutts M, Vidal C, Courel S, Rebelo AP, et al. Identification of a new SYT2 variant validates an unusual distal motor neuropathy phenotype. Neurol Genet. 2018;4:282. https://doi.org/10.1212/NXG.0000000000000282.

    Article  CAS  Google Scholar 

  138. Baker K, Gordon SL, Melland H, Bumbak F, Scott DJ, Jiang TJ, et al. SYT1-associated neurodevelopmental disorder: a case series. Brain. 2018;141:2576–91. https://doi.org/10.1093/brain/awy209.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Shin OH, Xu J, Rizo J, Südhof TC. Differential but convergent functions of Ca2+ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release. Proc Natl Acad Sci U S A. 2009;106:16469–74. https://doi.org/10.1073/pnas.0908798106.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Maselli RA, Wei DT, Hodgson TS, Sampson JB, Vazquez J, Smith HL, et al. Dominant and recessive congenital myasthenic syndromes caused by SYT2 mutations. Muscle Nerve. 2021;64:219–24. https://doi.org/10.1002/mus.27332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Zhao-Wen Wang, Dr. Natalí L. Chanaday Ricagni, Dr. Rong Sun, Elena D Bagatelas, and Liana Wilson for comments on the manuscript. This work was supported by National Institutes of Health (NIH) grant R00MH113764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangjun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Q. (2023). Calcium Sensors of Neurotransmitter Release. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Advances in Neurobiology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-34229-5_5

Download citation

Publish with us

Policies and ethics