Skip to main content

Characterizing Wildfire Perimeter Polygons from QUIC-Fire

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

Abstract

QUIC-Fire is a modern fire simulation tool that can simulate the progression of three-dimensional fuel consumption over a landscape, modeling the interaction of a wildfire with weather such as wind conditions around the wildfire. The resulting simulation gives a detailed progression of the consumed three-dimensional fuel that can be eloquently mapped to an image of a burn area in the landscape as the wildfire progresses over time. Although an image of burned vegetation over a landscape gives detailed information of the activity and coverage area of a wildfire, a numerical characterization of the boundary of the burn area can be used for a variety of computations. The boundary of the burn area, also labeled as the wildfire perimeter, can be parametrized with a closed polygon. The set of ordered vertices of the closed polygon provide a compact numerical representation of the location of the wildfire and can be used for computations related to fire coverage area and modern wildfire assimilation techniques to improve the prediction of wildfire progression. Designing a robust algorithm to create a wildfire perimeter in the form of a set of ordered vertices of a closed polygon around the image of consumed vegetation in a landscape is not a trivial task. This paper discusses the properties of two such algorithms: the iterative minimum distance algorithm (IMDA) and quadriculation algorithm (QA) to obtain a closed polygon for a wildfire perimeter. To illustrate the effectiveness, these two algorithms are applied to multiple image (raster) data of a burn area in the landscape of a wildfire created by QUIC-Fire simulations. It is shown that both algorithms are robust in computing wildfire perimeters, and computational time are less than one second for each image created by QUIC-Fire. As such, this work contributes to the development of computational methods to automate the process of characterizing the closed polygon of a wildfire perimeter based on burn area images.

Work is supported by WIFIRE Commons and funded by NSF 2040676 and NSF 2134904 under the Convergence Accelerator program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtemeier, G.L.: Field validation of a free-agent cellular automata model of fire spread with fire-atmosphere coupling. Int. J. Wildland Fire 22(2), 148–156 (2012)

    Article  Google Scholar 

  2. Cheney, N., Gould, J., Catchpole, W.: The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3(1), 31–44 (1993)

    Article  Google Scholar 

  3. Dickinson, M.B., et al.: Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors-RxCADRE 2012. Int. J. Wildland Fire 25(1), 48–61 (2015)

    Article  Google Scholar 

  4. Fang, H., Srivas, T., de Callafon, R.A., Haile, M.A.: Ensemble-based simultaneous input and state estimation for nonlinear dynamic systems with application to wildfire data assimilation. Control Eng. Pract. 63, 104–115 (2017)

    Article  Google Scholar 

  5. Finney, M.A.: FARSITE, Fire Area Simulator - model development and evaluation, vol. 4. US Department of Agriculture, Forest Service, Rocky Mountain Research Station (1998)

    Google Scholar 

  6. García, N.L.F., Martínez, L.D.M., Poyato, Á.C., Cuevas, F.J.M., Carnicer, R.M.: Unsupervised generation of polygonal approximations based on the convex hull. Pattern Recogn. Lett. 135, 138–145 (2020)

    Article  Google Scholar 

  7. Gollner, M., et al.: Towards data-driven operational wildfire spread modeling: A report of the NSF-funded WIFIRE workshop. Technical Report (2015)

    Google Scholar 

  8. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)

    Article  MathSciNet  Google Scholar 

  9. Linn, R., Reisner, J., Colman, J.J., Winterkamp, J.: Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 11(4), 233–246 (2002)

    Article  Google Scholar 

  10. Linn, R.R., et al.: QUIC-fire: a fast-running simulation tool for prescribed fire planning. Environ. Model. Softw. 125, 104616 (2020)

    Article  Google Scholar 

  11. Mandel, J., et al.: Towards a dynamic data driven application system for wildfire simulation. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 632–639. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_82

    Chapter  Google Scholar 

  12. Mandel, J., et al.: A note on dynamic data driven wildfire modeling. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 725–731. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_94

    Chapter  Google Scholar 

  13. Manzano-Agugliaro, F., Pérez-Aranda, J., De La Cruz, J.: Methodology to obtain isochrones from large wildfires. Int. J. Wildland Fire 23(3), 338–349 (2014)

    Article  Google Scholar 

  14. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels, vol. 115. Intermountain Forest and Range Experiment Station, Forest Service, United \(\ldots \) (1972)

    Google Scholar 

  15. Srivas, T., Artés, T., De Callafon, R.A., Altintas, I.: Wildfire spread prediction and assimilation for FARSITE using ensemble Kalman filtering. Procedia Comput. Sci. 80, 897–908 (2016)

    Article  Google Scholar 

  16. Stow, D.A., Riggan, P.J., Storey, E.J., Coulter, L.L.: Measuring fire spread rates from repeat pass airborne thermal infrared imagery. Remote Sens. Lett. 5(9), 803–812 (2014)

    Article  Google Scholar 

  17. Subramanian, A., Tan, L., de Callafon, R.A., Crawl, D., Altintas, I.: Recursive updates of wildfire perimeters using barrier points and ensemble Kalman filtering. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 225–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_18

    Chapter  Google Scholar 

  18. Tan, L., de Callafon, R.A., Block, J., Crawl, D., Altıntaş, I.: Improving wildfire simulations by estimation of wildfire wind conditions from fire perimeter measurements. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12746, pp. 231–244. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77977-1_18

    Chapter  Google Scholar 

  19. Tan, L., de Callafon, R.A., Block, J., Crawl, D., Çağlar, T., Altıntaş, I.: Estimation of wildfire wind conditions via perimeter and surface area optimization. J. Comput. Sci. 61, 101633 (2022)

    Google Scholar 

  20. Valero, M., Rios, O., Pastor, E., Planas, E.: Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildland Fire 27(4), 241–256 (2018)

    Google Scholar 

  21. Zajkowski, T.J., et al.: Evaluation and use of remotely piloted aircraft systems for operations and research-RxCADRE 2012. Int. J. Wildland Fire 25(1), 114–128 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. de Callafon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, L., de Callafon, R.A., Altıntaş, I. (2022). Characterizing Wildfire Perimeter Polygons from QUIC-Fire. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics