

#### Better Buildings Residential Network Peer Exchange Call Series: How Quality Installation Impacts Equipment March 26, 2020



### **Agenda and Ground Rules**

- Agenda Review and Ground Rules
- Opening Poll
- Residential Network Overview and Upcoming Call Schedule
- Featured Speakers:
  - Dean Gamble, U.S. Environmental Protection Agency (EPA)
  - David Lis, Northeast Energy Efficiency Partnerships (NEEP)
  - Christopher Boyce, Emerson Climate Technologies
- Open Discussion
- Closing Poll and Announcements

**Ground Rules:** 

- 1. Sales of services and commercial messages are not appropriate during Peer Exchange Calls.
- 2. Calls are a safe place for discussion; **please do not attribute information to individuals** on the call.

The views expressed by speakers are their own, and do not reflect those of the Dept. of Energy.





# **Better Buildings Residential Network**

#### **Join the Network**

#### **Member Benefits:**

- Recognition in media and publications
- Speaking opportunities
- Updates on latest trends
- Voluntary member initiatives
- One-on-One brainstorming conversations

#### **Commitment:**

 Members only need to provide one number: their organization's number of residential energy upgrades per year, or equivalent.

#### Upcoming Calls (2<sup>nd</sup> & 4<sup>th</sup> Thursdays):

- Apr 09: How Hot Is It? Preparing for Summer Cooling Season
- May 14: How is the Coronavirus Impacting Energy Efficiency Businesses?
- May 28: Is the Smart Home Delivering on Its Promises?

Peer Exchange Call summaries are posted on the Better Buildings website a few weeks after the call

For more information or to join, for no cost, email <u>bbresidentialnetwork@ee.doe.gov</u>, or go to <u>energy.gov/eere/bbrn</u> & click Join







#### Dean Gamble U.S. Environmental Protection Agency

U.S. DEPARTMENT OF



#### How Bad Installation Can Negate Good Equipment

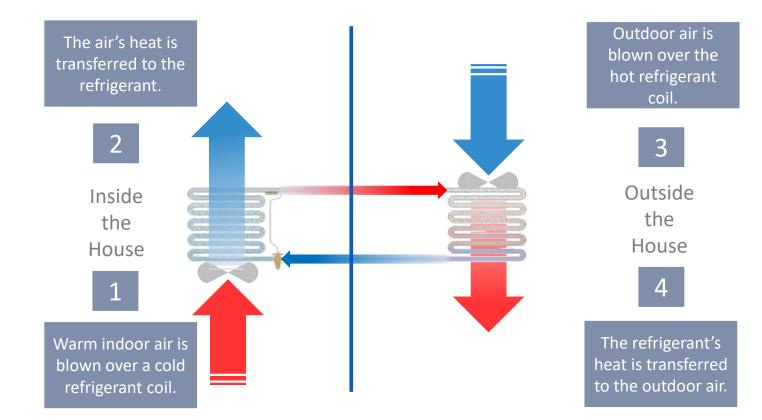
Better Buildings Residential Network Peer Exchange Call Dean Gamble March 26, 2020



# Introduction






SEPA ENERGY STAR. The simple choice for energy efficiency.

- Improper airflow:
  - Average airflow ~20% below target. Blasnik et al. (1995)
  - Average airflow 14% below design. Proctor (1997)
  - Measured airflow ranging from 130 510 CFM / ton. Parker (1997)
  - 70% of units had airflow < 350 CFM / ton. Neme et al. (1999)
  - Improper airflow in 44% of systems. Mowris et al. (2004)



- Incorrect refrigerant charge:
  - In 57% of systems. Downey/Proctor (2002)
  - In 62% of systems. Proctor (2004)
  - In 72% of systems. Mowris et al. (2004)
  - In 82% of systems. Proctor (1997)

| Study Author                                 | State    | Existing<br>or New<br>Home? | Sample<br>Size | Average<br>Airflow | Airflow<br><350 cfm | Airflow<br>wiin 10%<br>of 400/ton | Energy<br>Savings<br>Potential | Notes           |                                                 | 4        |                    |          |            |           |         |           |                                                                                                                  |
|----------------------------------------------|----------|-----------------------------|----------------|--------------------|---------------------|-----------------------------------|--------------------------------|-----------------|-------------------------------------------------|----------|--------------------|----------|------------|-----------|---------|-----------|------------------------------------------------------------------------------------------------------------------|
| Blasnik et al. 1995a<br>Blasnik et al. 1995b | NV<br>CA | New<br>New                  | 30<br>10       | 345<br>319         | 50%<br>90%          |                                   | 8%                             | Est @ 33% ci    | ombined charge/air flow o                       | arrecti  | on benefit         | s        |            |           |         |           |                                                                                                                  |
| Blasnik et al. 1995                          | AZ       | New                         | 22             | 344                | 64%                 | 29%                               | 10%                            | Est @ 33% c     | mbined charge/air flow o                        | omecti   | nn benefit         |          |            |           |         |           |                                                                                                                  |
| fammarlund et al. 1992                       | CA       | New                         | 12             |                    |                     | 30%                               | 10%                            | Single family   | résults                                         | 011000   | or ( specification |          | 1          |           |         |           |                                                                                                                  |
| fammarlund et al. 1992                       | CA       | New                         | 66             |                    | 76%                 | 14%                               | 12%                            | Multi-family re |                                                 |          |                    |          |            |           |         |           |                                                                                                                  |
| leme et al. 1997                             | MD       | New                         | 25             | 340                |                     |                                   |                                |                 | on-participant homes                            |          |                    |          |            |           |         |           |                                                                                                                  |
| Palani et al. 1992                           | п.в.     | n.a.                        | 0.8.           |                    |                     |                                   | 4%                             |                 | R degradation at 25% re                         | duction  | in air fin         |          |            |           |         |           |                                                                                                                  |
| Parker et al. 1997                           | FL       | Both                        | 27             | 270                | 89%                 | 7%                                | 10%                            | Field measure   | mts of flow; lab test of ef                     | fic loss |                    |          |            |           |         |           |                                                                                                                  |
| Proctor & Pemick 1992                        | CA       | Existing                    | 175            |                    | 44%                 |                                   |                                |                 | de from PG&F Model En                           |          |                    | Prop as  |            |           |         |           |                                                                                                                  |
| Proctor 1991                                 | CA       | Existing                    | 15             |                    |                     | 33%                               |                                | Two-thirds It   |                                                 |          |                    |          |            |           |         |           |                                                                                                                  |
| Proctor et al. 1995a                         | CA       | Existing                    | 30             | 300                | 80%                 | 11%                               |                                | SCE Coach       |                                                 |          | Existing           | 100      | Charge     |           |         | Energy    |                                                                                                                  |
| Rodriguez et al. 1995                        | n.a.     | n.a.                        | n.a.           |                    |                     |                                   | 2%                             | Lab test of 1   |                                                 |          | or New             | Sample   | correct to | % over    | % under |           |                                                                                                                  |
| todriguez et al. 1995                        | a.a.     | n.a.                        | n.a.           |                    |                     |                                   | 10%                            | Lab test of (   | Study Author                                    | State    | Homes?             |          | mfg spec   |           |         |           |                                                                                                                  |
| /EIC/PEG 1997                                | NJ       | New                         | 52             | 372                |                     | 30%                               | 7%                             | Est @ 33%       |                                                 |          |                    | - Oleo   | und shao   | energe    | charge  | Putentia  | 140168                                                                                                           |
| Average                                      | 0.4.4    | _                           |                | 327                | 70%                 | 22%                               | 8%                             |                 | Blasnik et al. 1995a<br>Blasnik et al. 1995b    | NV<br>CA | New<br>New         | 30<br>10 | 35%        | 5%        | 59%     | 17%<br>8% | Est @ 67% combined charge/air flow correction benefits<br>Est @ 67% combined charge/air flow correction benefits |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Blasnik et al. 1996                             | AZ       | New                | 22       | 18%        | 4%        | 78%     | 21%       | Est @ 67% combined charge/air flow correction benefits                                                           |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Farzad & O'Neal 1993                            | n.a.     | n.a.               | п.а.     |            | 01037     | 10.000  | 5%        | Lab test of TXV; 8% loss @20% overchg; 2% loss @20% underchg                                                     |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Farzad & O'Neal 1993                            | n.a.     | n.a.               | n.a.     |            |           |         | 17%       | Lab test of 1XV, o a loss @20% overcing, 2% loss @20% Underchg                                                   |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Hammarlund et al. 1992                          |          | New                | 12       |            |           |         | 12%       | Lab test of Orifice; 13% loss @20% overchg; 21% loss @ 20% underchg                                              |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Hammarlund et al. 1992                          | 1000     | New                | 66       | 31%        | 61%       | 8.84    | 00105     | Single family results                                                                                            |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)         | NC/SC    |                    | 22       |            | 10.055.00 | 8%      | 12%       | Multi-family results                                                                                             |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Proctor & Pernick 1992                          |          |                    |          | 14%        | 64%       | 23%     |           | Charge measured in 22 systems in 13 homes                                                                        |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | 2 1 A 5 3 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A | CA       | Existing           | 175      | 44%        | 33%       | 23%     |           | Results from PG&E Model Energy Communities Program                                                               |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Proctor 1991                                    | CA       | Existing           | 15       | 44%        |           |         |           | Fresno homes                                                                                                     |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Proctor et al. 1995a                            | CA       | Existing           | 30       | 11%        | 33%       | 56%     |           |                                                                                                                  |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Proctor et al. 1997a                            | NJ       | New                | 52       |            |           |         | 13%       | Est @ 67% combined charge/air flow correction banefits                                                           |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Rodriguez et al. 1995                           | n.a.     | 0.8,               | n.a.     |            |           |         | 5%        | Lab test of TXV EER; 5% loss at both 20% overchg & 20% underchg                                                  |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Rodriguez et al. 1995                           | n.a.     | n.a.               | n.a.     |            | ŝ         |         | 15%       | Lab test of Orifice EER; 7% loss @20% overchg, 22% loss @ 20% underci                                            |
|                                              |          |                             |                |                    |                     |                                   |                                |                 | Average                                         |          |                    |          | 28%        | 33%       | 41%     | 12%       |                                                                                                                  |

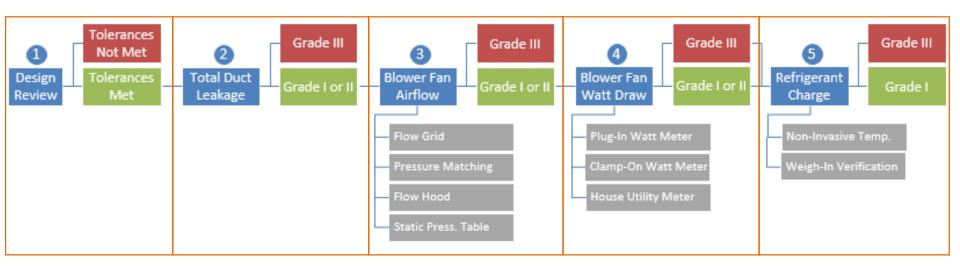




# Overview of Std 310: Grading the Installation of HVAC Systems

### **RESNET/ACCA Std. 310:** Grading Concept

- Integrate into a standard HERS/ERI rating process.
  - Completed by home energy raters.
  - Primarily, but not exclusively, applicable to new construction industry
- Follow RESNET's insulation quality-installation model:
  - Grade III: The default. No assessment. No penalty and no credit.
  - Grade II: Assessment completed and the system is ok. Partial credit.
  - Grade I: Assessment completed and the system is very good. Full credit.
- Use tasks that California's code requires as a starting point.




### **RESNET/ACCA Std. 310: Guiding Principles**

- Take a 'carrot' rather than a 'stick' approach.
- Reward incremental improvement.
- Include procedures applicable to both Rater and HVAC professionals.
- Ensure the procedures provide value in and of themselves.



#### **RESNET/ACCA Std. 310:** Standard for Grading the Installation of HVAC Systems



ENERGY STAP



# Task 1: Design Review



## Task 1: Evaluate the design

- 1. Rater collects design documentation for the dwelling with the HVAC system being tested.
- 2. Rater reviews design documentation for completeness and compares it to the dwelling. Key features must fall within defined tolerances. For example:

| Floor Area  | Indoor Design Temps  | Insulation Levels |  |  |
|-------------|----------------------|-------------------|--|--|
| Window Area | Outdoor Design Temps | Infiltration Rate |  |  |
| # Occupants | Window SHGC          | Ventilation Rate  |  |  |

3. If tolerances are met, proceed to next task. Otherwise stop here.





# **Task 2: Total Duct Leakage**



## Task 2: Evaluate total duct leakage

1. Rater measures total duct leakage according to Std. 380, evaluates the results, and assigns a grade:

| Grade | Test Stage | # Returns | Total Leakage Limit<br>(CFM per 100 ft <sup>2</sup> or<br>Total CFM) |  |  |  |
|-------|------------|-----------|----------------------------------------------------------------------|--|--|--|
|       | Pough In   | < 3       | 4 or 40 total                                                        |  |  |  |
| 1     | Rough-In   | ≥ 3       | 6 or 60 total                                                        |  |  |  |
| 1     | Final      | < 3       | 8 or 80 total                                                        |  |  |  |
|       | FINAI      | ≥ 3       | 12 or 120 total                                                      |  |  |  |
|       | Pouch In   | < 3       | 6 or 60 total                                                        |  |  |  |
|       | Rough-In   | ≥ 3       | 8 or 80 total                                                        |  |  |  |
| II    | Final      | < 3       | 10 or 100 total                                                      |  |  |  |
|       | Final      | ≥ 3       | 14 or 140 total                                                      |  |  |  |
|       | N/A        | N/A       | No Limit                                                             |  |  |  |

2. If Grade I or II is achieved, proceed to next task. Otherwise stop here. 19





# **Task 3: Blower Fan Airflow**



## **Task 3: Evaluate Blower Fan Airflow**

- Raters measure the total volumetric airflow going through the blower fan using one of four test methods:
  - A. Flow Hood
  - B. Flow Grid
  - **C.** Pressure Matching
  - D. OEM Static Pressure Table
- This is just one or two measurements for most systems. It is not measuring the airflow from each register and summing those.
- The result is compared to the design airflow. The closer the better. This difference is used to assign Grade I, II, or III.
- If Grade I or II is achieved, proceed to next task. Otherwise stop here.





### **Task 4: Blower Fan Watt Draw**



## Task 4: Evaluate Blower Fan Watt Draw

- Raters evaluate the watt draw of the blower fan using one of three test methods:
  - A. Plug-In Watt Meter
  - B. Clamp-On Watt Meter
  - c. Utility Meter
- The airflow and watt draw is used to calculate fan efficiency. The more efficient, the better. This is used to assign Grade I, II, or III.
- Regardless of grade, you can proceed to next task.





# **Task 5: Refrigerant Charge**



# **Task 5: Evaluate Refrigerant Charge**

- Raters evaluates the refrigerant charge of the system using one of two test methods:
  - A. Non-Invasive Method
  - B. Weigh-In Verification Method



## **Task 5: Evaluate Refrigerant Charge**

#### A. Non-Invasive Method

- 'Non-invasive' means no gauges connected to refrigerant system.
- Instead, the temperature of the air and refrigerant lines are used.
- Triage systems into two bins:
  - Grade I Charge is okay
  - Grade III Charge is not okay

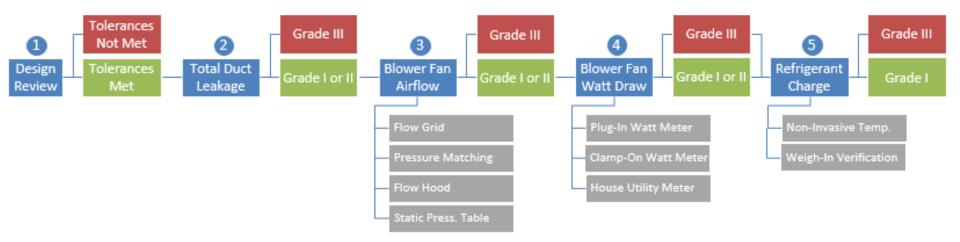


Refrigerant Gauges Not Connected



Temperature Sensors Used Instead




# **Task 5: Evaluate Refrigerant Charge**

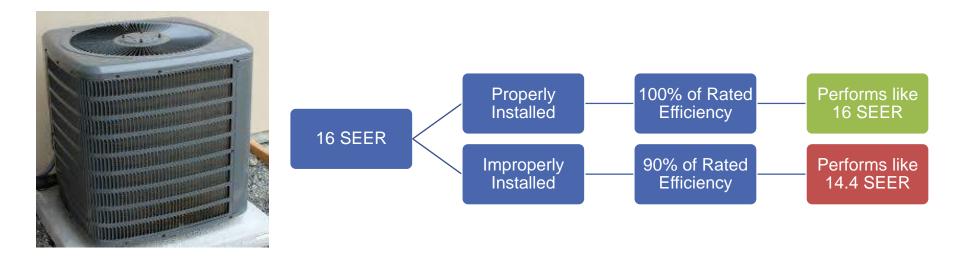
#### **B. Weigh-In Verification Method**

- The weigh-in verification method can be used year-round and it must be used for:
  - Extreme outdoor conditions.
  - Mini/multi-split systems.
- This method is primarily a document review rather than a performance test.



#### Std. 310: Standard for Grading the Installation of HVAC Systems

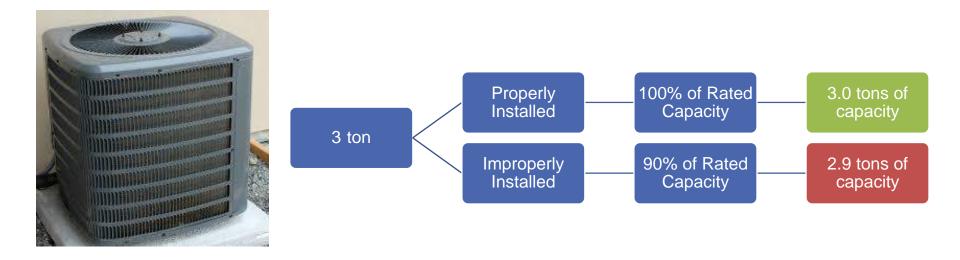





ENERGY STAP



#### **Properly-installed HVAC maintains <u>efficiency</u>**


• Rewarded with better efficiency and a better HERS / ERI rating.



ENERGY STAI

#### **Properly-installed HVAC maintains <u>capacity</u>**

• Rewarded with better comfort and durability.



#### HVAC grading benefits for..

- Builders Energy ratings, tax credit, comfort, durability.
- Utility Programs Energy and demand benefits.
- HVAC Manufacturers Rewarded for features that ease installation.
- Raters Valuable new service for any energy rated home.
- ENERGY STAR Certified Homes Extra credit for program requirements, lower compliance cost.



# **Alternative Compliance Paths**

#### **Alternative Compliance Paths**

- Primary goal of Std. 310 is to define a method for Raters to assess HVAC design and installation.
- However, the standard also includes a framework for two alternative compliance paths:
  - On-board diagnostics that directly provide data to Raters.
  - Third-party verifiers that collect and provide data in lieu of Raters, with oversight outside of RESNET.



# Summary

### **Summary**

- Installation defects impact the efficiency & capacity of HVAC systems.
- Standard 310 will be a new standard for evaluating the design and installation quality of HVAC systems.
- The standard is primarily designed for home energy raters, but includes a framework for two alternative compliance paths.
- This will allow homes to earn HERS/ERI points for properly installed HVAC systems.
- To read the second public draft of Standard 310, visit: <u>www.resnet.us/about/standards/resnet-ansi/draft-pds-02-bsr-resnet-acca-310-20xx/</u>
- The standard should be finalized and available for use by the end of this year.



### ENERGY STAR Residential New Construction

#### Web & Email:

Single Family: Multifamily: Email:

www.energystar.gov/newhomesrequirements www.energystar.gov/mfnc energystarhomes@energystar.gov

37

Dean Gamble Technical Manager ENERGY STAR SF New Construction gamble.dean@epa.gov



#### David Lis Northeast Energy Efficiency Partnerships

U.S. DEPARTMENT OF



# Getting Residential Air-Source Heat Pumps Right in Cold Climates

- Dave Lis, Director, Technology and Market Solutions
- March 26, 2020
- BBRN Webinar- How Bad Installation Can Negate Good Equipment



#### **Northeast Energy Efficiency Partnerships**

#### **Mission**

We seek to accelerate regional collaboration to promote advanced energy efficiency and related solutions in homes, buildings, industry, and communities.

#### Approach

Drive market transformation regionally by fostering collaboration and innovation, developing tools, and disseminating knowledge

"Assist the Northeast and Mid-Atlantic region to reduce building sector energy consumption 3% per year and carbon emissions 40% by 2030 (relative to 2001)"

### About NEEP

A Regional Energy Efficiency Organization





### Here's what I'll be covering today



- Quick background on NEEP's regional Air-Source Heat Pump Initiative
- Why we care about design and installation practices
- Overview of NEEP's ASHP Installer Resources
  - Sizing & Selecting
  - Installation





# Regional ASHP Market Transformation Strategy





ASHP adoption plays a significant role in our region achieving carbon reduction goals

Assumed Market shares in 2035 according to NEEP's "Plausibly Optimistic" scenario reflects;
Residential Heat Pumps-

- 89% for delivered fuel systems
- 68% sales share of today's natural gas systems sales

#### **Market Transformation Strategies**

ne ep

**1. Increase Consumer Education and Awareness** 

2. Increase Installer/Builder Awareness of, and Confidence in, ASHP through expanded training and education

**3.** Reduce Upfront Costs of installed systems through robust and aligned promotional programs and the support of alternative business models

4. Mobilize State and Local Policymakers to expand support for ASHPs

5. Promote Advanced Control technologies to allow automated coordination among multiple heating systems

6. Enable the promotion of climate-appropriate ASHPs through Improved Performance Metrics

7. Develop more accurate tools to predict energy, cost and GHG savings associated with ASHP installation through collection and analysis of Real World Performance Data

#### **Market Transformation Strategies**



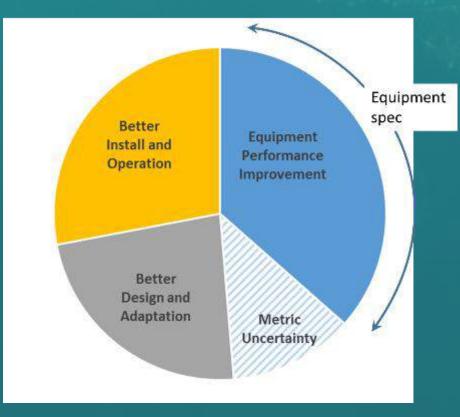
**1. Increase Consumer Education and Awareness** 

2. Increase Installer/Builder Awareness of, and Confidence in, ASHP through expanded training and education

**3.** Reduce Upfront Costs of installed systems through robust and aligned promotional programs and the support of alternative business models

4. Mobilize State and Local Policymakers to expand support for ASHPs

5. Promote Advanced Control technologies to allow automated coordination among multiple heating systems


6. Enable the promotion of climate-appropriate ASHPs through Improved Performance Metrics

7. Develop more accurate tools to predict energy, cost and GHG savings associated with ASHP installation through collection and analysis of Real World Performance Data

# In field performance relies on the design, equipment, and install



- We often focus too heavily on equipment ratings
- Working regionally and with partners outside the region on driving improvements in all areas



# Sizing/selecting/installing in cold climates

- Sizing/selection/Installation crucial to system performance
- New systems, new applications challenge longstanding metrics, tools and practices.





### **Quantifying the opportunity**



- Numerous studies have found significant energy penalties resulting from installation faults
- 2014 NIST Study- "Increases of energy use by 30% due to improper installation practices seem to be plausible."
- Anecdotal example- difference between MA/RI and VT field performance results

#### **Resource Development process**



- With DOE support
- Assessment of Residential and Small Commercial Air-Source Heat pump (ASHP) Installation Practices in Cold-Climates
- Convened Regional Subcommittee





Assessment of Residential and Small Commercial Air-Source Heat pump (ASHP) Installation Practices in Cold-Climates

June 2017

### Sizing and Selecting Guide





#### Guide To Sizing & Selecting Air-Source Heat Pumps in Cold Climates

A companion to NEEP's Guide to Installing Air-Source Heat Pumps in Cold Climates

#### Introduction

Leading HVAC manufacturers report significant growth in the installation of air-source heat pumps in some of the colder regions of the U.S., including the Northeast.<sup>1</sup> Many of the systems being installed today are "ductless" and variable-capacity. The systems are being installed in a variety of different residential applications, from limited zoned solutions to more comprehensive whole house solutions. System sizing and selection practices have not always kept up with this varied and dynamic landscape of ASHP installations, especially for colder climate installations. System performance, including energy efficiency of the systems, can be negatively impacted by poor sizing and system selection, as is customer comfort. This document was developed to assist installers in sizing and selecting ASHPs for cold climate applications, while maintaining high efficiency, performance, and customer satisfaction. NEEP's Assessment Report – Air-Source Heat Pump Installation Practices in Cold-Climates – provided insight into current sizing and selecting practices and informed the development of this Guide.

There are many types of equipment and a wide variety of common applications for ASHP installations in cold climates. Combinations of single and multi-zone, mini-split, "ductless" or "mini-duct" systems, or more conventional centrally ducted air-handler systems, may be installed in existing or new homes. The purpose may be conventional: provide all the required heating and cooling for a house or a large section of a house, or for a single zone or addition. But it may be less conventional: many mini- and multi-split systems are installed in homes to provide a partial offset to a conventional heating system that uses an expensive or carbon-intensive fuel. When the objective of installing an ASHP is reducing operating costs or emissions, conventional approaches to sizing and selection may need revising. Standard approaches don't fit many of these applications, and may even prevent installers from offering the most cost-effective, optimal solutions to their customers.

This guide is organized into five main application types to allow users to more easily match guidance to their specific installation. The applications are:



#### Guide To Sizing & Selecting Air-Source Heat Pumps in Cold Climates A companion to NEEP's Guide to installing Air-Source Heat Pumps in Cold Climates

Heating (or Heating & Cooling) Displacement

| Application Description                                                                             | Customer primerily dealers to reduce heating (and<br>History is supplemental when the existing heating<br>service life. The main tradeoff is between initial co                                                                                         | equipment is not at or near the and of its                                                     |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Suggested ASHP System Configuration<br>(Single/Multi-Zero Ductices, Mini-Duct,<br>Centrally Dusted) | For this explication, spikel configurations and<br>located to serve central living space (for reduc<br>option, durities and/or mini-durit, san be con-<br>and a mings (higher naturated coat). In some o<br>make sense by that is more likely a whelsho |                                                                                                |
| Suggested Treatment of Existing HVAC<br>System                                                      | Loft in place, provides heat only as needed. As<br>of house an for improved comfort.                                                                                                                                                                    | A companion to 1                                                                               |
| Sizing Dirategy Overview                                                                            | Place first care where heat will cover most ce<br>(as appropriate) to intrategically cover like like<br>to heating load of analys to be served (block i<br>design heating load. If our solid geometric ideal<br>cooling load for work come              | Full Heating S                                                                                 |
| Load Galeslation                                                                                    | See 'Getting Lead Calculations Right' to ensu                                                                                                                                                                                                           |                                                                                                |
| Equipment Selection Considerations                                                                  | Heating aquasity of system at or rear outdoor<br>Underschip samewhat for heating should imp<br>over though earnal system may be used cligh<br>outdoor temperatures will reduce operating or                                                             | Application Description                                                                        |
| Oversizing Converse / Tradeoffs                                                                     | Cooling oversize is mitigated by variable-spee<br>is own 130% of design conting load, look for a<br>capacity, or a larger turn down catto (a lower m                                                                                                    | Suggetted ASHP System Configurati<br>(Single/Multi-Zone Duotless, Mini-Du<br>Centrally Ducted) |
| uther Cuidence                                                                                      |                                                                                                                                                                                                                                                         | Suggested Treatment of Existing HV/                                                            |

#### Further Guidance

- Consider fiber means us convergited fiber appecially when heating is the outstand priority a loads. For effective distribution to is individual nonmal balanceme with low loads, use a single residence for means dust connections are useful with meaning and multi-balance is a minimum of R45, Bat A higher; set sentral or bookup heating thermostation (approximately 4°F) lower whereas it are is an individual of the set of the set
- Also note that when a hext pump satisfies a whole house thermastat in very sold weather, pip worther strategy should include some supplemental heat to preven this, will seal and inside where possible.

| Guide To Sizing                                                                                                 | g & Selecting Air-Source                   |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Heat Pumps in                                                                                                   | Cold Climates                              |
| a la la companya de l | and a stand of the second stand stands and |

#### Full Heating System Replacement

Typically per-keasi-MMG is hydroxins or cream distribution, or existing discnerk is lerely, pootly realised, skilly an particity in attic grange or vented crankpace. The existing system is decommanded a parally revealed, the same same is unstanded and the build with the existable inconditional space, are advected y call for satisfies in constant and and an a to be detected.

eetad ACLIP System Configuration Je/MalitZane Duotless, Mini-Duot, Mini Douted a serve the entre heres, In serve Mini Deuted

> Builting, non-walks dusts are decomplianced or remove dusts that are sound compliance apres or subald only regularized and that are sound compliance apres or subald only are cut off or the inclused boundary which is then course

Graing Strategy Overview Sea for the larger of the antimated heating or oooling los design temperature with 100-11 GS of the estimated heat heat. Or, design for excellence heat at a balance point of 20

| od Gakulation                    | Use full AODA Mancel J or oppivalism.                                                                                                                                            |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ulpmant Salertion Considerations | Heating use menufacturer published performance or d<br>with adequate heating capacity. Dooling may use AMI<br>sobotitute for detailed manufacturers specifications in            |
| ersizing Concerns / Toxdeoffs    | Potential cooling oversize is retigated by variable-apex<br>repeaty is over 130% of design cooling load, look for es<br>to cooling capanity, or a larger two-down ratio (a lower |

#### Further Guidance

Lo

60

Ow

- Consider floor makes with serving from floos, expectivily where heating is the sendome priority. Avoid events leads. For distance data bodies to maintraductional bedroome with two bodies, use a sample method with the (or ensure data connections are sealed with matter and insolated to a minimum of R40. Thermally isolate gradged may need operate cource(s) for configst.
- If existing ducts are atilized, first answer that the evaluate index unit is matched well with the ducts for a existing one dompets, remove and sell any resum hypers and resure all flow molidates properly will be When each the molecular distribution of MAC reglacement, total these party ad design conditions at the oriester they acceled party exponence oparaty. Heating load may be reduced be as of AMI in the constant they acceled party exponence oparaty. Heating load may be reduced be as a of AMI in the second of the second second
- lesses. Note that measurements of existing central equipment duty cycle at or men design conditions can also (and/ur cooling) tool.
- Ensure adequate prenary or explicitly heat in becament to prevent freezing pipes; an seal and insulate a
- Application Description
   Description open to the set of the

Guide To Sizing & Selecting Air-Source

A companion to NEEP's Guide to Installing Air-Source Heat Pumps in Cold Climates

Heat Pumps in Cold Climates

#### Further Guidance

ne

Isolated Zone

- Note that an "isolated zone" in a house that is influences fully heated by an existing central appliant range efficiency and reduce installed cost to careful not in data cash o system larger than the estud insers to its distributor house house end on the set of the primer second to the ABMP is confined and account for the system before acting the ABMP uset. Otherwise, it may be beneficial to reduce or remove central applica-
- Tollest need for new system is driven by an existing comfort issue, ensure that any building shell issues systesce, exciting duct disconnects or (each, etc.) are addressed before installing new equipment. Asso performed to strengty economication.

| esed fron<br>garaga, | ne | C |
|----------------------|----|---|
|                      | Gb | F |

#### Guide To Sizing & Selecting Air-Source Heat Pumps in Cold Climates

A companion to NEEP's Guide to Installing Air-Source Heat Pumps in Cold Climates

#### New Construction or Gut Rehab

| Application Description                                                                              | House to well insulated and relatively air tight (meets or encoded current holding energy<br>(coded).                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bugg sated AEHP System Configuration<br>(Single/Multi-Zone Ductless, Mini-Duct,<br>Centrally Ductod) | For this application, typical configuration could include analysis and/or more bases, including<br>deadless and/or mini-load, or a single contrail in handles. Deads, whereased, any contained<br>earliestly with in the instruct/base/and/or of the loads. Ended to very field performance-barries<br>many down of the bits 2-3. doubles and/or mini-fact arraws. Large tensis that made causes,<br>analy you'ver include and the site of the fact arraws. Large tensis that made causes,<br>analy you'ver include and the site of the fact arraws. |
| Suggested Treatment of Existing HVA0<br>System                                                       | Follow ADGA Manual J or equivalent load calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sizing Strategy Overview                                                                             | Size for the large of the estimate if treating or cooling load. Match system capacity at the<br>design competation with 100-116% of the estimated heating load, generally without the use of<br>walking heat. Dr. design for walking heat at a balance point of 2017 or below.                                                                                                                                                                                                                                                                       |
| Load Caleslation                                                                                     | Use fall ACCA Manual J or equivoire.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Equipment Selection Considerations                                                                   | Heading: use menufacturer published performance at design conditions to identify systems<br>with adequate heating capacity. Cooling may use Artifit relied capacity (9617) * 1.6 as<br>substitute for detailed many facturers specifications in a cold ofinishe.                                                                                                                                                                                                                                                                                     |
| Oversizing Concerns / Tradeoffs                                                                      | Potential accounts is in mitigated by variable operating segment: if in initian's speed accelling<br>appendix is over 126% of design costing lead, look for equipment with a higher ratio of heading<br>to social example, or a jacent fact does not for factory minimum examples of the look.                                                                                                                                                                                                                                                       |

#### Further Guidance

- Consider Vision mount of (15) gening that frame expendition is more than executing advanced set of the multi-individual executions and the execution advanced set of the execution o
- Insotnensky tight, low-load balldogs to expectably elements on it is oversize equipment. Strategizally placed on placed accelers and/or may
  provide adequate control to an entrol frace or use mini-block systeme to ensure distribution to cinable resons. A element of society advances are ensured
  as a second strategize elemented ad.

#### **Application Sheets**

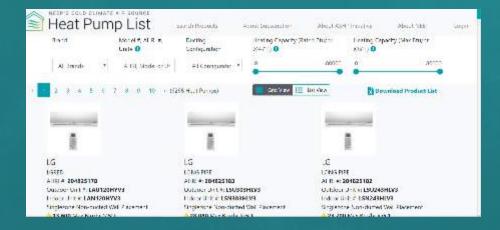
# ne ep

#### Important concepts



- Address building enclosure issues before sizing/selecting ASHP
  - Reduces heating/cooling costs
  - Reduces needed capacity, cost of system
  - Improved comfort, satisfaction
- Need to go beyond "rule of thumb" Load calculations




#### Important concepts



- Oversizing is an efficiency killer
  - Increased importance on load calcs
- Size for heating and cooling, rather than "larger of the two"
- Ensure adequate "turn-down"
- Pay special attention to multi-zones
   turn-down, oversizing
- Generally encourage more, smaller outdoor units

# NEEP Cold-Climate Specification/ Product List





|           | fean-            | Note 1 ALE             | <ul> <li>Excling</li> <li>Contigue</li> </ul> |                           | Heating Zapaci<br>4947-11 ()                | ty Rat-1En                  | ni în  | Heating Co<br>(\$175) 0            | epartly delay            | thu or                        |                           |
|-----------|------------------|------------------------|-----------------------------------------------|---------------------------|---------------------------------------------|-----------------------------|--------|------------------------------------|--------------------------|-------------------------------|---------------------------|
|           | PULITED T        | તનશ ખાલ                | 100/00                                        | alguntik *                | 0                                           |                             | 8000   | U                                  |                          | 4.11                          | 0                         |
| 1         | 35 Hor: Publica  |                        |                                               |                           | and they                                    | Lui Ve                      | m      | 0                                  | uwnlood N                | roduct Lint                   |                           |
| 1944      | . Drand Name ×   | AURI +<br>Reference No | Outdoor Unit                                  | Indoor Unit<br>. Model(s) | <ul> <li>Ducting</li> <li>Config</li> </ul> | lispr ~<br>. (Region<br>IV) | SECR ~ | CDP at-<br>Max<br>Capacity<br>@5*5 | Max<br>Copecity<br>(251) | Rated -<br>Copecity<br>(P471) | Rated<br>Capacity<br>9957 |
|           | FUITSJ           | 5912451                | AGU 46REARZ                                   |                           | Nution .                                    | 95                          | 18.7   | 2.01                               | 36407                    | 47000                         | 45000                     |
| 16        |                  | 202587551              | ACC48RGLK                                     | ARU48RELX                 | Kiu luor .                                  | 103                         | 16.0   | 2.27                               | 36090                    | 55000                         | 45000                     |
| 7 I.      | FUITSU           | 20252750               |                                               |                           |                                             | 0.460                       | 414    | 2.31                               | 18150                    | 21000                         | 15000                     |
| 6         | FUITSU<br>FUITSU | 20255755               | ACC18RGEX                                     | AJJ15P5_X                 | Singlaza.                                   | 16.5                        | E141   | ALC: NO                            |                          |                               |                           |
| \$ \$     |                  | 2020/12/201            | AGU18RGEX<br>AGU24RGEX                        | AJJ1585.3<br>AJJ2485.3    | Singlaz.                                    |                             | 20     | 2.05                               | 22300                    | 27000                         | 24000                     |
| * * * * * | FUITSU           | 202175106              |                                               |                           |                                             | 10.8                        | 12221  |                                    |                          | 27000<br>32000                |                           |

#### https://neep-ashp-prod.herokuapp.com

| Information                                                       | LG LGRED<br>Singlesone Non-ducted Wall Placenu<br>Artilli Cert # 204025178<br>Diedeor Unit # LAN220HYVS<br>Indeor Unit # LAN220HYVS<br>Mastimum Hosting Capacity (Burb) &<br>Mastimum Hosting Capacity (Burb) &<br>Brated Cooling Capacity (Burb) &<br>Tables | n) @5"F: 13,600<br>47"F: 13,600<br>95"F: 12,000 | nce Spec | 6          |             |             |        |                |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|------------|-------------|-------------|--------|----------------|
| Brand                                                             | 16                                                                                                                                                                                                                                                            | Heating /                                       | Outdeor  | Indoor Dry |             |             |        |                |
| Series                                                            | LIGRED                                                                                                                                                                                                                                                        | Cooling                                         | Dry Bulb | Bulb       | Unit        | Min         | Rated  | Mex            |
| Ducting<br>Configuration                                          | Singlezone Non-ducted Wall Placement                                                                                                                                                                                                                          | Heating                                         | 575      | 70'Ŧ       | Bturh<br>KW | 450<br>0.19 | -      | 13,600<br>1.37 |
| AHRI                                                              | 204825178                                                                                                                                                                                                                                                     |                                                 |          |            | 009         | 0.69        |        | 2.91           |
| Certificate                                                       |                                                                                                                                                                                                                                                               | Heating                                         | 17'F     | 70'F       | Brath       | 603         | 8.300  | 14.760         |
| No.<br>Outdoor Unit                                               | LAUR MUNIC                                                                                                                                                                                                                                                    | 1                                               |          |            | kw          | 0.2         | 0.78   | 1.4            |
| Outdoor Unit                                                      | CAUTZURY/S                                                                                                                                                                                                                                                    |                                                 |          |            | COP         | 0.88        | 3.12   | 3.09           |
| Indoor Unit                                                       | Mini-Splits                                                                                                                                                                                                                                                   | Heating                                         | 47°F     | 70'F       | B\$U/h      | 1,023       | 13,600 | 22,178         |
| Туре                                                              |                                                                                                                                                                                                                                                               |                                                 |          |            | kw          | 0.2         | 0.97   | 1,25           |
| Indoor Unit #                                                     | LAN120HVV3                                                                                                                                                                                                                                                    |                                                 |          |            | COP         | 1,5         | 4.11   | 5.2            |
| Furnace Unit                                                      |                                                                                                                                                                                                                                                               | Cooling                                         | 82*F     | 80'7       | Btu/h       | 1/023       | 2      | 13,477         |
| #<br>SEER                                                         | 25.5                                                                                                                                                                                                                                                          |                                                 |          |            | 10V         | 0.2         | - 22   | 0.94           |
| SEER                                                              | 118                                                                                                                                                                                                                                                           |                                                 |          |            | COP         | 1,5         | +      | 4.2            |
| HSPF Region                                                       | 125                                                                                                                                                                                                                                                           | Cooling                                         | 95°F     | SC*F       | Btu/h       | 1,023       | 12,000 | 12,785         |
| IV                                                                | <i>J</i>                                                                                                                                                                                                                                                      |                                                 |          |            | COP         | 1.5         | 4.04   | 3.54           |
| Energy Star<br>Veriable<br>Capacity                               | ¥<br>¥                                                                                                                                                                                                                                                        |                                                 |          |            | 00          | 42          | 4.04   | 2.24           |
| Maintenance<br>Cepecity<br>Max<br>5°F/Max<br>47°F)<br>Maintenance |                                                                                                                                                                                                                                                               |                                                 |          |            |             |             |        |                |
| Capacity<br>Max<br>S'F/Max<br>17'F)                               |                                                                                                                                                                                                                                                               |                                                 |          |            |             |             |        |                |
| Maintenance<br>Capacity<br>Max<br>5°F/Rated<br>47°F)              | 100%                                                                                                                                                                                                                                                          |                                                 |          |            |             |             |        |                |
| Integration                                                       | WORKS WITH LG SMART-THIND, LG<br>PROPRIETARY HEATER RELAY ACCESORRIES,<br>LG PROPRIETARY PORVOSION - PORVOSIZO<br>DRY CONTACT FOR THIRD PARTY<br>HERMIDISTICS WORKS WITH AMAZON<br>ALEXA AND GOOGLE HOME.                                                     |                                                 |          |            |             |             |        |                |
| Connectivity                                                      | API LICENSING AGREEMENT IS MAILABLE<br>TO ALLOW OTHERS TO ACCESS CONTROL<br>THROUGH LG WI-RI SMART-THINQ                                                                                                                                                      |                                                 |          |            |             |             |        |                |
| Operational<br>Diagnostics                                        | DIAGNOSTICS AVAILABLE THROUGH LS<br>SMART THINQ WI-R APP OR LS WIRED<br>CONTROLLER                                                                                                                                                                            |                                                 |          |            |             |             |        |                |
| Refrigerant(s)                                                    | R410A                                                                                                                                                                                                                                                         |                                                 |          |            |             |             |        |                |
| Pan Heater                                                        |                                                                                                                                                                                                                                                               |                                                 |          |            |             |             |        |                |
|                                                                   | regrated                                                                                                                                                                                                                                                      |                                                 |          |            |             |             |        |                |
| Input 90<br>Power                                                 | WATTS                                                                                                                                                                                                                                                         |                                                 |          |            |             |             |        |                |
| Model #                                                           |                                                                                                                                                                                                                                                               |                                                 |          |            |             |             |        |                |

### **Installation Guide**





A Companion to NEEP's Guide to Sizing & Selecting Air-Source Heat Pumps in Cold Climates



#### Introduction

High-quality installations of air-source heat pump (ASHP) systems generate referrals, increase sales, reduce callbacks and improve customer comfort and satisfaction. Installation practices also have a major impact on efficiency and performance of an ASHP system. Efficient ASHPs have seen significant sales growth in colder climates in recent years. The recent generation of cold-climate ASHPs, combined with insights from large-scale installation programs and installers, has led to a better understanding of the full range of practices to ensure maximum system performance and customer satisfaction. This guide provides a list of these best practices, as well as homeowner education and system setup guidance, to help ensure efficient air-source heat pumps and happy customers in cold climates.

Heat pumps should always be installed by licensed, trained professionals. Always follow manufacturer's specification and installation instructions, and all applicable building codes and regulations. All installers should attend a manufacturer's training or preferred installer program.

ASHPs come in a number of configurations, and in some cases the following guidance may be specific to one or more of those system types. There are many variations and terms used, but these guidelines will focus on the following broad categories: "ductless ASHP" refers to any non-ducted cassette type indoor unit (including wall-mount air handlers, floor mounted consoles, inceiling cassettes, etc.); "mini-duct ASHP" refers to remote air handlers that are typically designed for compact, concealed-ceiling or short-duct configurations; and "centrally ducted ASHP" refers to whole-house systems with central air handlers. The icons shown here are used below to indicate when guidance is specific to a certain system type. All items without icons are generally applicable to all ASHP configurations.







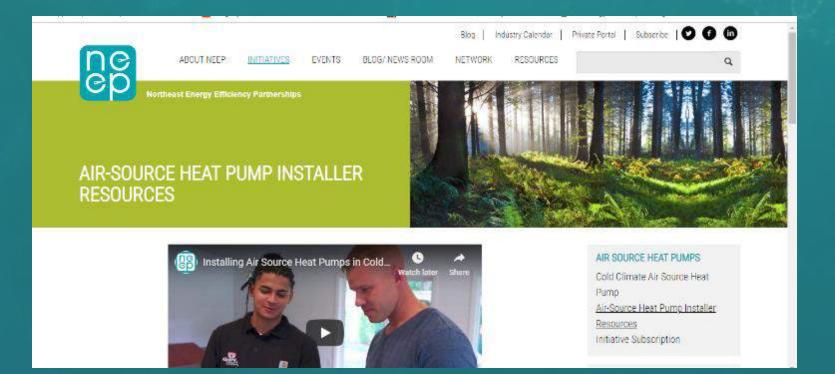
### **Installation Best Practices: Categories**

- Line Set
- Recommended Tools
- Refrigerant Tubing
- Refrigerant Charge
- Condensate Drain
- Outdoor Unit Installation
- Indoor Unit Installation
- Placement of Indoor Unit
- Ducting Considerations

### **Notable for Cold Climates**



- Ensure adequate clearance of outdoor unit above historical average maximum snow depth
- Focus on protecting outdoor unit from eaves/drip/snow
   De-emphasis on pan heaters
- Ensure adequate clearance of indoor wall unit from the ceiling
- Recommendation of floor-mount / console units
   For heating-focused applications, lower floors
- Avoid field fabricated flare fittings if possible
  - Gasketed press/crimp designed for the refrigerant and tubing type (e.g., Sporlan Zoom Lock<sup>®</sup>, Vulkan LokRing<sup>®</sup>).
- Wall-mounted control shall be installed in a location that will be representative of the space the unit is serving


### Video versions now available





#### **Installer Resources**





Go to; www.neep.org/ASHPInstallerResources Spread the word!

#### **Opportunity going forward...**



- Improved ASHP Design practices
- Onboard/3<sup>rd</sup> party diagnostic functionality
  - QI verification, real time performance monitoring
  - Support for ENERGY STAR's QI requirements
- Expanding virtual platforms for training installers

#### Take-aways



- QI is important across all HVAC, but particularly critical for ASHP adoption in cold climates
- HVAC Industry/stakeholders need to prioritize this
- Help us get the word out.. please share the Resources, contact us if you have suggestions for updates
  - www.neep.org/ASHPInstallerResources



### THANK YOU!

Dave Lis djlis@neep.org

March 26, 2020

81 Hartwell Avenue, Lexington, MA 02421 P: 781.860.9177 X127 www.neep.org



#### Christopher Boyce Emerson Climate Technologies

U.S. DEPARTMENT OF

Sensi Predict Overview sen si titat

EMERSON

CONTRACT ROAD

#### Manage the surprises

Confirm Quality Work Reduce Callback

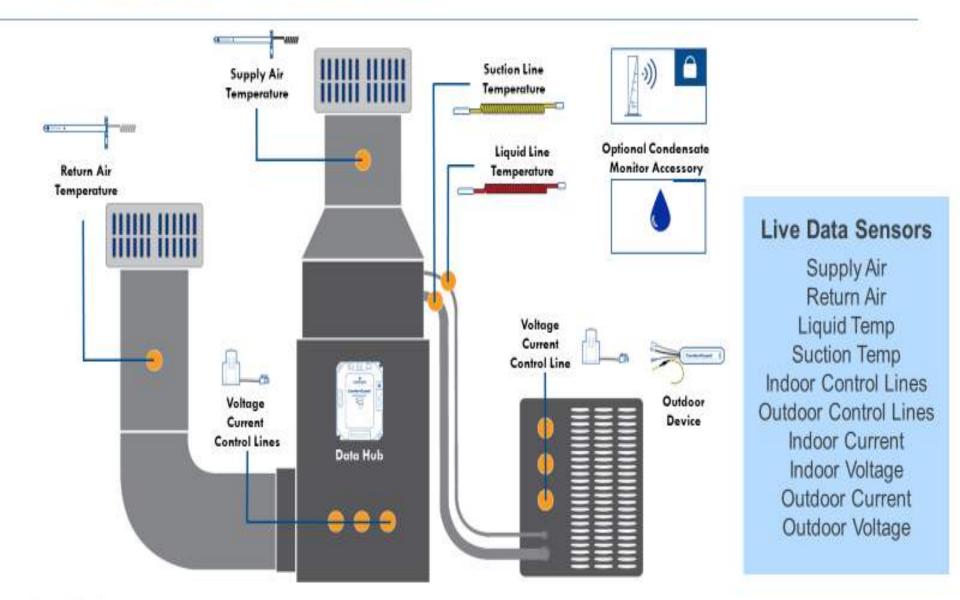
### **Optimize Workforce**

Expand Technician Efficiency & Coverage Eliminate Nuisance Calls Balance High Volume Call Periods

#### Create Meaningful Connections with Homeowners Expand Maintenance Relationships

**Increase Close Rate** 

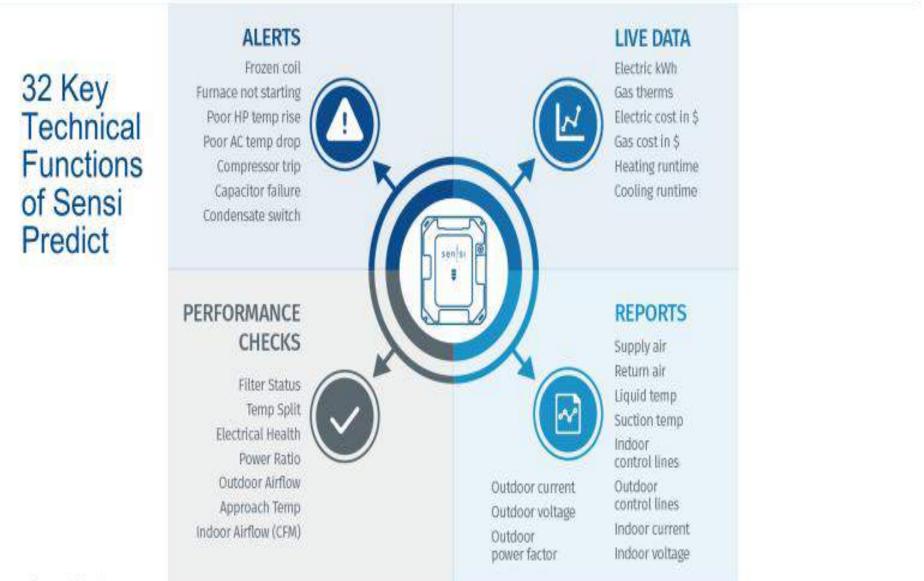
Confirm Quality Work Reduce Callback


#### **Optimize Workforce**

Expand Technician Efficiency & Coverage Eliminate Nuisance Calls Balance High Volume Call Periods

#### **Create Meaningful Connections with Homeowners**

**Expand Maintenance Relationships** Increase Close Rate


#### The Product behind the Solution



# Automotive Type Predictive Diagnostics comes to HVAC



# Predictive Diagnostics - Data leads to Action



Essergion Confidential

# Creating the Bond between Contractor & Homeowner

- Ability to Upgrade or Offer Smart Technology
- 24/7 Monitoring
- Real-time Performance
   Alerts
- Monthly Reports of System Performance/Cost of Operation
- Filter Reminders
- Peace of Mind



# Confirm Quality Install with measureQuick

- Reduce Callback
- Tools for technician while onsite for performance confirmation
- Provide Customers an installation report
- Monthly Reports of System Performance



# Confirm Quality Install with measureQuick

- Utilizes Bluetooth Tools
- Most comprehensive diagnostic tool
- Verify SEER & Capacity
- Works with Sensi Predict
  - Sensor Data Live Streams into MQ

| Outdoor Measurements<br>Los Pressure (psig*T) 1383 |        | Indoor Measurements                 |       |   |                     |
|----------------------------------------------------|--------|-------------------------------------|-------|---|---------------------|
| Los Pressure (psigr?) 118.1                        |        |                                     |       |   | System Info.& We    |
|                                                    | 1064   | Return Twing. (#)                   | 310   |   | Bysten Type         |
| High Preesure (pelg/F) 350.5                       | 105.8  | Report WH                           | 600   |   | Normal Tonnage do   |
| Suction Line Tremp. (17)                           | 80.0   | Reson Wet Buts (*P)                 | 62.4  | 8 | Refratort           |
| Upid Lite Temp (1F)                                | 10     | Supply Temp. (17).                  | 960   |   | licental Article    |
| Disharga Lina Tanja (14)                           | 106.5  | Tuesty S2H                          | H D   |   | 8669                |
| Outdoor MicTemp: (1F)                              | 46.0   | Supply Wet Bulk (17)                | 10.2  | 8 | Mataring Device     |
| Superheet (11)                                     | 101 8  | Anflow: Extensied (SCPM)            | 758   | 8 | Abringhers Pressure |
| Subcosing (*)                                      | 11.8 B | Artical, Materiard (SCFM)           | 1.6   |   | Elevation (7)       |
| Compression Rubo                                   | , 24 番 | Tatal External Static Pres (rond(s) | . 05  |   | Temperature (F)     |
| Condenser Volkage                                  | 220.0  | AHU Voltege                         | 110.0 |   | Humatly (%):        |
| Соланын Анрикарс                                   | 10     | AHJ Ainperage                       | 30    |   | Daw Paint ( F)      |
| Condenier Power Pactor                             | 0.95   | Alt/PolerFactor                     | 295   |   | fighter Stately     |
| Condenser Poleer (W)                               | (es B  | AHG Power (W)                       | 214   | 8 |                     |
| Performance Calculations                           |        | -                                   | in-   |   | A COM               |

1034

±7 pai/s

641

1,777

12.01

14.01

Whole Home

Desendication

Denumia Galone

Energy Efficiency:

Far Efforts

Intel Pointel

Approx. DEEPI

£194

Normalized 1.9 Taxes / 22,220 Blade

244.14

Notes: Example project notes

Customer

177 Test I

**Sanality Heat Rafe** 

10100122-6886-6

1.2.Toris / 15.520 Duly (18.7x formation)

CATING / KARP RUN

(10) Pro Restances

III P. Robalda



sen

Connect to

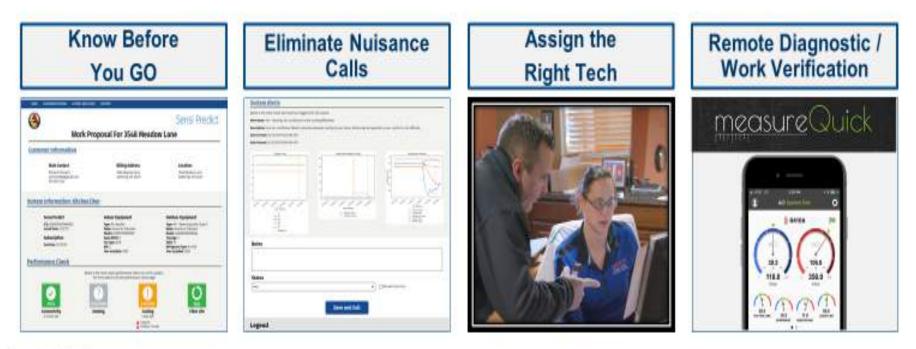
**Hather Data** 

re (péal

SI

5pk

Act18 400 1316


TEV 14.101

> 903 64.5

66.0 34.0

### Grow Efficiency and Profitability of the Contractor

- Increase Revenue per Truck Roll
- Manage Workflow / Labor
- Verify Repairs & Quality of Installations



#### How information is delivered to Contractor

| Work      | Manage                 | ment Portal           |                                                          |           |         |
|-----------|------------------------|-----------------------|----------------------------------------------------------|-----------|---------|
| Sensi     | Predict                | Jamis,                |                                                          | 9         | 0       |
|           |                        |                       |                                                          |           |         |
| HOME I    | USION DISTURBANCIANS C | ACTIVITATIVE STA      |                                                          |           |         |
| New Work  | Proposals Re           | viewed Work Proposals | s Connectivity Filter                                    |           |         |
| ID Ť      | Account                | System                | Description                                              | Created   | Status  |
| 001+1777  |                        | Helix System          | 40 - Warning- Refrigerant Temperature is Too Low         | 94/35/19  | fiere : |
| 108480    |                        | Main Piper            | 204 - Itlaming - Failing Outdoor Component               | 84/15/19  | Nen     |
| DILATES   | 1                      | first floor           | 403 - Manning-Air Conditioner is Not Cooling Effective.  | 04(16/19  | Ben.    |
| 1014830   | -                      | first floor           | 40 - Warning- Refrigerant Temperature is Too Low         | 04/14/19  | New .   |
| 0074830   |                        | Illhole Horse         | 902 - Marning - Famace Not Operating Property            | 84/13/19  | New .   |
| Delle (0) |                        | Kitchen/Gen           | will - Haming- Air Constitioner is Not Cooling Offectiv. | \$4/12/19 | liew.   |
| 00141112  |                        | Whole Hone            | 204 - Haming - Failing Outdoor Component                 | 06/11/19  | New     |
| 25412     |                        | Whole stickly hover   | 204 - Warning - Failing Outdoor Component                | 04/11/19  | Ren .   |
| 05684020  |                        | Kitchers/Dev          | 40 - Warning- Refrigerant Temperature is Too Low         | 64/33/19  | fiew.   |
| olisials. | 2 I I I                | Kitchen/Den           | 204 - Manning - Failing Cutdoor Component                | 64/10/19  | New     |
| 1111-000  | 1 I                    | Mailer Bedsoom        | 403 - Marring-Air Conditioner is Not Cooling Effective.  | 05/09/19  | New     |
| 00146203  |                        | Ofalloo Main Floor    | +0 - Warning- Refrigerant Temperature is Too Low         | 04/09/19  | New     |
| 001+1201  |                        | YAMI                  | 403 - Itaming- Air Conditioner is Not Cooling Effective. | 84(09)79  | Rev     |
| 0056880   | -                      | Hait floor            | 40 - Warning- Refrigerant Temperature is Too Low         | 84/08/18  | liew.   |
| 00347834  | 5                      | Illhole Horse         | 403 - Manning-Air Conditioner is Not Cooling Difective.  | 04/00/19  | New     |
| SILATES   |                        | Whole Hone            | 40 - Warning- Refrigerant Temperature is Too Low         | 04/05/19  | New.    |
| 102147723 |                        | Whole Hoxe            | 204 - Warning - Failing Outdoor Component                | 94/07/19  | ñew .   |
| 001a77172 |                        | lihole horse          | 204 - Warning - Failing Outdoor Component                | 04/07/19  | liew    |
| 060+040   |                        | Ithole Home           | 902 - Warning - Furnace Not Operating Property           | \$4/(6/19 | New.    |
| 00347623  |                        | Entire flome          | 304 - Marning - Falling Outdoor Component                | 04/04/19  | New     |
| 01546819  |                        | Second Flaer          | 403 - Warning-Air Conditioner is Not Cooling Effective.  | 0+/03/19  | Ben.    |

#### Work Proposal Summary

#### Work Proposal For Jacob Nielson, 1776 West 950 South

#### Customer

| Main Con                                    | 3.0                                                               | <b>Billing Address</b>                                | Location                                     |                |     |  |  |
|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|----------------|-----|--|--|
| laceb Wielso<br>jaten ielson<br>501 477-040 | Senalcom                                                          | 106 Bologaet O.<br>Olidizat, MO 60068                 | 1776 West 950 South<br>Springville, 67 84663 |                |     |  |  |
| System Info                                 | rmation                                                           |                                                       |                                              |                |     |  |  |
| Sensi Predict                               | Indoor Equipment                                                  |                                                       | Filter Info                                  | mation         |     |  |  |
| Name: Whole Home<br>KD:                     | Type: Furnace<br>Make: Tempstar                                   | Equipment<br>Type AC                                  | 12. 4                                        | 24 8           | 1   |  |  |
| Exected Oute:                               | Model:<br>NEMSNO/01412A3                                          | Make Tempstar<br>Rodel MusicalAkt/101                 | reight                                       | Hidth De       | φØ. |  |  |
| 83/04/2019                                  | Input KOTE: 60<br>Fan Type: PSC<br>Date Installed:<br>IEN/07/2019 | Tannage 25<br>SEER 13<br>Rofrigecavit Type: R-<br>108 | niter and b                                  | langed aix 95. | man |  |  |
| Performanc                                  |                                                                   | tare installed<br>01/01/2019                          |                                              |                |     |  |  |
| Performance                                 | e Check                                                           | Date Installed<br>Datations                           |                                              | Filter U       | fe  |  |  |
| Connectivity                                | e Check                                                           | Date Installed<br>Datations                           |                                              | Filter Li      | fe  |  |  |
| Connectivity<br>2 days cape                 | e Check                                                           | Date Installed<br>Datations                           |                                              |                |     |  |  |

# How information is delivered to the Homeowner

#### **Contractor Branding**

Enward

- Replaces the some traditional awareness marketing Branded communication
  - · Performance reports, Account Portal, Monthly Reports, Alerts
  - · Links provide direct access to the contractors

| Monthly R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report                                                                                                                  | Real-Time Alert                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Homeowne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Portal         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| MINNICK'S<br>SMART MAINTENANCE REPORT<br>Of Bood and Trans Law Problems<br>Demonstration<br>Constration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstration<br>Demonstr |                                                                                                                         | Tors, our sensors have detected a warning elect on your system that could lead to breakdown or significant methodency. Please review the alert details and recommended action below.                                                                                                                                                                                                                                                                                   | Airts 2<br>Tear Sector to Alexand<br>Prior Sector | Newlog (Persaid) |
| Committing Brief<br>Committing Brief<br>For an Angel in the Later<br>State and Format Tapan<br>State and Forma                                                                                                                                                                                                                                                                       | UNII<br>Milk Booky<br>E-marks age<br>Trichita age<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr.<br>Cr. | Alieft: AC evaporator coll is eccenarie vold.<br>Alieft: AC evaporator coll is eccenarie vold.<br>Alieft AC<br>Wood Aug 15 2018 12:12 PM<br>In even accumulate in two events of the second of a unit<br>induce coding upper to be second of the second of the<br>experient and protect your more the possible value | Cooling     Aus     Meating (furnace)     Aus     Filter Life     (% Rengining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |

# Sensi Predict

# Questions And Thank You



#### **SLOPE** Platform

A DOE-led collaboration between NREL and 8 EERE technology offices to create a dynamic, comprehensive energy planning platform

of integrated, localized data for state and local decision makers

- Phase I: Beta version launched (Jan. 2020)
- **Phase II:** Adding transportation and generation mix data; enabling user-saved settings (under development in 2020)

Access the Platform: https://gds.nrel.gov/slope

> Comments or Questions? slope@nrel.gov



Resources to help improve your program and reach energy efficiency targets:

- <u>Handbooks</u> explain why and how to implement specific stages of a program.
- <u>Quick Answers</u> provide answers and resources for common questions.
- Proven Practices posts include lessons learned, examples, and helpful tips from successful programs.
- <u>Technology Solutions</u> NEW! present resources on advanced technologies, **HVAC & Heat Pump Water Heaters**, including installation guidance, marketing strategies, & potential savings.







# **Thank You!**

Follow us to plug into the latest Better Buildings news and updates!

**Better Buildings Twitter with #BBResNet** 

**Better Buildings LinkedIn** 

**Fice of Energy Efficiency and Renewable Energy**Facebook

Please send any follow-up questions or future call topic ideas to: <u>bbresidentialnetwork@ee.doe.gov</u>



