Skip to main content

Advertisement

Log in

Sintering effects on additive manufactured Ni–Mn–Ga shape memory alloys: a microstructure and thermal analysis

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the effects of time dependency for isothermal sintering on additive manufactured Ni–Mn–Ga magnetic shape memory alloys. Binder jetting additive manufacturing was used to produce Ni–Mn–Ga parts from pre-alloyed powders. Additive manufacturing via the binder jetting technique produces parts with intrinsic porosities, based on the morphology of the source material. The Ni–Mn–Ga parts printed in this study using the binder jetting method possessed average densities of ~ 46% before sintering. These samples were sintered at 1353 K in increments of 10 h up to 50 h. Based on this temperature and time frame, (1) microstructural evolution, (2) crystallographic phase analysis, (3) transformation behaviors, and (4) thermal–physical properties were investigated. The additive manufactured Ni–Mn–Ga samples exhibited increases in densities, from ~ 74 to ~ 83% due to solid-state diffusion mechanisms. X-ray diffraction reveals that all of the additive manufactured samples have the 5 M martensitic phase at room temperature. Reversible martensitic transformation temperatures were recorded during heating and cooling cycles through differential scanning calorimetry, which indicate austenitic phase transformations occurring slightly above ambient temperatures. Additionally, analysis of the heating and cooling cycles prescribes that the entropy and Gibb’s energies decrease over the reversible martensitic transformations as sintering time increases. It is envisioned that this study will support a more synergistic manufacturing process between binder jetting additive manufacturing and post-heat treatment processes for Ni–Mn–Ga shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Chernenko VA, Besseghini S (2008) Sens Actuators Phys 142:542–548

    Article  CAS  Google Scholar 

  2. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966–1968

    Article  CAS  Google Scholar 

  3. Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746–1748

    Article  CAS  Google Scholar 

  4. Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin

    Google Scholar 

  5. Faran E, Shilo D (2016) Exp Tech 40:1005–1031

    Article  Google Scholar 

  6. Shiva S, Palani IA, Mishra SK, Paul CP, Kukreja LM (2015) Opt Laser Technol 69:44–51

    Article  CAS  Google Scholar 

  7. Krishna BV, Bose S, Bandyopadhyay A (2007) Metall Mater Trans A 38:1096–1103

    Article  Google Scholar 

  8. Xiong F, Liu Y, Pagounis E (2005) J Magn Magn Mater 285:410–416

    Article  CAS  Google Scholar 

  9. Roth S, Gaitzsch U, Pötschke M, Schultz L (2008) Adv Mater Res 52:29–34

    Article  CAS  Google Scholar 

  10. Chmielus M, Zhang XX, Witherspoon C, Dunand DC, Müllner P (2009) Nat Mater 8:863–866

    Article  CAS  Google Scholar 

  11. Caputo MP, Berkowitz AE, Armstrong A, Müllner P, Solomon CV (2018) Addit Manuf 21:579–588

    Article  CAS  Google Scholar 

  12. Caputo MP, Solomon CV (2017) Mater Lett 200:87–89

    Article  CAS  Google Scholar 

  13. Utela BR, Storti D, Anderson RL, Ganter M (2010) J Manuf Sci Eng Trans ASME 132:110081–110089

    Article  Google Scholar 

  14. Liu J, Rynerson M (2003) Method for article fabrication using carbohydrate binder, US6585930 B2

  15. Do T, Kwon P, Shin CS (2017) Int J Mach Tools Manuf 121:50–60

    Article  Google Scholar 

  16. Mostafaei A, Rodriguez De Vecchis P, Stevens EL, Chmielus M (2018) Acta Mater 154:355–364

    Article  CAS  Google Scholar 

  17. Li Y, Xu F, Hu X, Dong B, Luan Y, Xiao Y (2016) Materials 9:132

    Article  Google Scholar 

  18. Bai Y, Williams CB (2015) Rapid Prototyp J 21:177–185

    Article  Google Scholar 

  19. Witherspoon C, Zheng P, Chmielus M, Dunand DC, Müllner P (2015) Acta Mater 92:64–71

    Article  CAS  Google Scholar 

  20. Dunand DC, Müllner P (2011) Adv Mater 23:216–232

    Article  CAS  Google Scholar 

  21. Banhart J (2001) Prog Mater Sci 46:559–632

    Article  CAS  Google Scholar 

  22. Castaño FJ, Nelson-Cheeseman B, O’Handley RC, Ross CA, Redondo C, Castaño F (2003) J Appl Phys 93:8492–8494

    Article  Google Scholar 

  23. Zheng P, Kucza NJ, Patrick CL, Müllner P, Dunand DC (2015) J Alloys Compd 624:226–233

    Article  CAS  Google Scholar 

  24. Richard M, Feuchtwanger J, Schlagel D, Lograsso T, Allen SM, O’Handley RC (2006) Scr Mater 54:1797–1801

    Article  CAS  Google Scholar 

  25. Righi L, Albertini F, Calestani G, Pareti L, Paoluzi A, Ritter C, Algarabel PA, Morellon L, Ricardo Ibarra M (2006) J Solid State Chem 179:3525–3533

    Article  CAS  Google Scholar 

  26. Righi L, Albertini F, Pareti L, Paoluzi A, Calestani G (2007) Acta Mater 55:5237–5245

    Article  CAS  Google Scholar 

  27. Righi L, Albertini F, Villa E, Paoluzi A, Calestani G, Chernenko V, Besseghini S, Ritter C, Passaretti F (2008) Acta Mater 56:4529–4535

    Article  CAS  Google Scholar 

  28. Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Acta Mater 48:3027–3038

    Article  CAS  Google Scholar 

  29. Jiang C, Muhammad Y, Deng L, Wu W, Xu H (2004) Acta Mater 52:2779–2785

    Article  CAS  Google Scholar 

  30. Sánchez-Alarcos V, Pérez-Landazábal JI, Recarte V, Rodríguez-Velamazán JA, Chernenko VA (2010) J Phys Condens Matter 22:166001

    Article  Google Scholar 

  31. Heczko O, Lanska N, Soderberg O, Ullakko K (2002) J Magn Magn Mater 242(Part 2):1446–1449

    Article  Google Scholar 

  32. Sofronie M, Tolea F, Kuncser V, Valeanu M (2010) J Appl Phys 107:113905

    Article  Google Scholar 

  33. Wu SK, Yang ST (2003) Mater Lett 57:4291–4296

    Article  CAS  Google Scholar 

  34. Sánchez-Alarcos V, Recarte V, Pérez-Landazábal JI, Cuello GJ (2007) Acta Mater 55:3883–3889

    Article  Google Scholar 

  35. Singh RK, Shamsuddin M, Gopalan R, Mathur RP, Chandrasekaran V (2008) Mater Sci Eng A 476:195–200

    Article  Google Scholar 

  36. Tian B, Chen F, Tong Y, Li L, Zheng Y (2012) J Mater Eng Perform 21:2530–2534

    Article  CAS  Google Scholar 

  37. Tian B, Chen F, Liu Y, Zheng YF (2008) Mater Lett 62:2851–2854

    Article  CAS  Google Scholar 

  38. Kök M, Aydogdu Y (2012) Thermochim Acta 548:51–55

    Article  Google Scholar 

  39. Jiang C, Feng G, Gong S, Xu H (2003) Mater Sci Eng A 342:231–235

    Article  Google Scholar 

  40. Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X (2007) Acta Mater 55:1533–1541

    Article  CAS  Google Scholar 

  41. Palazzo P (2012) Int J Energy Environ Eng 3:4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the use of the facilities within the Center for Excellence in Materials Science and Engineering and Center for Innovation in Additive Manufacturing at Youngstown State University. MPC and DRW gratefully acknowledge the financial support provided by the Engineering Technology and Commonwealth Engineering (ETCE), Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Caputo.

Ethics declarations

Conflict of interest

The authors hereby declare, to the best of their knowledge, that all relationships and/or interests of the manuscript do not include a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputo, M.P., Waryoba, D.R. & Solomon, C.V. Sintering effects on additive manufactured Ni–Mn–Ga shape memory alloys: a microstructure and thermal analysis. J Mater Sci 55, 5311–5321 (2020). https://doi.org/10.1007/s10853-020-04352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04352-9