CCC Releases Updated Report on Quantum Computing Progress

By John Russell

February 1, 2024

The Computing Community Consortium (CCC) has released an updated report on quantum computing progress in the past five years, based on a workshop held in the spring 2023. While the CCC report doesn’t break new ground it’s a good overview.

CCC posted a blog this week by Catherine Gill on the report that notes:

“Quantum Computing is in the Noisy Intermediate Scale Quantum (NISQ) era currently, meaning that Quantum Computers are still prone to high error rates and are able to maintain few logical qubits. The work being done in Quantum Error Correction, however, is enabling Quantum Computing to transition towards a Fault-tolerant future. “There has been remarkable progress in quantum computer hardware in the last five years”, says Kenneth Brown, Professor of Engineering at Duke University, “but challenges remain in terms of reducing errors and scaling systems. We thought it was critical to bring together experts in quantum computing, computer architecture, and systems engineering to plan for the next ten years.”

The workshop and subsequent report focused on five areas:

  • Technologies and Architectures with a View Towards Scaling. Scalable architectures demand that larger systems yield lower computational error and decreased per qubit costs, and reaching practical quantum computation will require creativity and cross-discipline collaboration within academia and industry to produce technological innovation that permeates the quantum compute stack. Further, improved models that are faithful to the dynamics of actual systems will help push progress forward by defining the practical constraints we must consider when making theoretical quantum systems a reality.
  • Applications and Algorithms. There is a clear need for more applications and algorithms with practical quantum advantage. This requires both producing near-term applications with demonstrated experimental advantage and continuing to develop keystone applications which have strong theoretical evidence of advantage. To facilitate these goals, we recommend reducing resource requirements of keystone applications, exploring near-term applications via domain integration, and benchmarking hardware to enable algorithm development.
  • Fault Tolerance and Error Mitigation. QCs are limited by noise. In the near-term, error mitigation will reduce application noise and quantum error correction (QEC) demonstrations will inform future QC design. Large scale quantum computation will require error correction and fault tolerance. Current developments in QEC codes present opportunities for co-design of quantum architectures. Systems that combine fault- tolerant principles and error-mitigation methods can serve as a bridge between current systems and future large-scale QCs.
  • Hybrid Quantum-Classical Systems: Architectures, Resource Management, and Security Quantum hardware will likely be advantageous on specialized computations, and the solution of most practical problems will require a hybrid solution with substantial classical computation in cooperation with a quantum kernel. The organization of these hybrid systems and the hybrid algorithms that run on them will be key areas of research. Classical computation for quantum circuit optimization, simulation, and verification will also be key enablers. Finally, an emerging concern is the secure design of quantum systems in the face of potential vulnerabilities.
  • Tools and Programming Languages. The tools for quantum programming are still relatively new. Quantum programming today requires a deep knowledge of unitary mathematics and its associated linear algebra. Even with this knowledge, well-known algorithms are non-intuitive to newcomers, and, new algorithms are difficult to reason about even for quantum experts. To welcome newcomers to the field, to facilitate research, and to permit scaling up to programs with quantum advantage, efficient high-level quantum programming abstractions are needed. To realize such abstractions, software engineering infrastructure is needed for compilation, verification, and simulation, both for near-term and long-term hardware.

The infographic list of qubit types below is a nice primer. It’s necessarily incomplete as the number of qubit types seems to grow daily.

The report concludes “Quantum computing is at a historic and pivotal time, with substantial engineering progress in the past 5 years and a transition to fault-tolerant systems in the next 5 years. Taking stock of what we have learned from NISQ systems, this report examined 5 key areas in which computer scientists have an important role in exploring.”

Among the report’s interesting findings is a recommendation to standardize QC benchmarking. “We recommend exploring standardized benchmarking frameworks to identify a set of benchmarks which would enable us to evaluate quantum platforms, algorithms, and potential domain problems. For example, an end-to-end quantum machine learning benchmark would allow us to evaluate not only the general performance of a quantum device, but also the algorithm’s noise resilience and data sensitivity. More work on widely accepted benchmarks with input from other communities (computer scientists, machine-learning communities) may also lead to increased collaboration and interest from other domain experts.”

(CCC is the NSF-created entity in 2007 – “The CCC operates as a programmatic committee of CRA under CRA’s bylaws: its membership only slightly overlaps the CRA’s Board of Directors; it has significant autonomy; and it has a great deal of synergistic mutual benefit with CRA. The CCC Council meets three times every calendar year, including at least one meeting in Washington, D.C., and has biweekly conference calls between these meetings. Also, the CCC leadership has biweekly conference calls with the leadership of NSF’s Directorate for Computer and Information Science and Engineering (CISE).”)

Link to CCC blog, https://cccblog.org/2024/01/25/ccc-releases-the-5-year-update-to-the-next-steps-in-quantum-computing-workshop-report/

Link to CCC report, https://cccblog.org/wp-content/uploads/2024/01/5-Year-Update-to-the-Next-Steps-in-Quantum-Computing.pdf

*The report authors include: Kenneth Brown, Duke University Fred Chong, University of Chicago Kaitlin N. Smith, Northwestern University and Infleqtion Thomas M. Conte, Georgia Institute of Technology and Community Computing Consortium Austin Adams, Georgia Institute of Technology Aniket Dalvi, Duke University Christopher Kang, University of Chicago Josh Viszlai, University of Chicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire