Skip to main content
Log in

Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the differential effects of conventional and Piezo-driven ICSI on blastocyst development, and on sperm component remodeling and oocyte activation, in an equine model.

Methods

In vitro-matured equine oocytes underwent conventional (Conv) or Piezo ICSI, the latter utilizing fluorocarbon ballast. Blastocyst development was compared between treatments to validate the model. Then, oocytes were fixed at 0, 6, or 18 h after injection, and stained for the sperm tail, acrosome, oocyte cortical granules, and chromatin. These parameters were compared between injection techniques and between sham-injected and sperm-injected oocytes among time periods.

Results

Blastocyst rates were 39 and 40%. The nucleus number was lower, and the nuclear fragmentation rate was higher, in blastocysts produced by Conv. Cortical granule loss started at 0H after both sperm and sham injection. The acrosome was present at 0H in both ICSI treatments, and persisted to 18H in significantly more Conv than Piezo oocytes (72 vs. 21%). Sperm head area was unchanged at 6H in Conv but significantly increased at this time in Piezo; correspondingly, at 6H significantly more Conv than Piezo oocytes remained at MII (80 vs. 9.5%). Sham injection did not induce significant meiotic resumption.

Conclusions

These data show that Piezo ICSI is associated with more rapid sperm component remodeling and oocyte meiotic resumption after sperm injection than is conventional ICSI, and with higher embryo quality at the blastocyst stage. This suggests that there is value in exploring the Piezo technique, utilized with a non-toxic fluorocarbon ballast, for use in clinical human ICSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sherins RJ, Thorsell LP, Dorfmann A, Dennison-Lagos L, Calvo LP, Krysa L, et al. Intracytoplasmic sperm injection facilitates fertilization even in the most severe forms of male infertility: pregnancy outcome correlates with maternal age and number of eggs available. Fertil Steril. 1995;64:369–75.

    Article  PubMed  CAS  Google Scholar 

  2. Salamone DF, Canel NG, Rodriguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction. 2017;154:F111–f24.

    Article  PubMed  Google Scholar 

  3. Galli C, Duchi R, Colleoni S, Lagutina I, Lazzari G. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology. 2014;81:138–51.

    Article  PubMed  Google Scholar 

  4. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum Reprod. 2016;31:1588–609.

    Article  PubMed  CAS  Google Scholar 

  5. Schlegel PN, Girardi SK. Clinical review 87: In vitro fertilization for male factor infertility. J Clin Endocrinol Metab. 1997;82:709–16.

    Article  PubMed  CAS  Google Scholar 

  6. Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995;52:709–20.

    Article  PubMed  CAS  Google Scholar 

  7. Yanagida K, Katayose H, Hirata S, Yazawa H, Hayashi S, Sato A. Influence of sperm immobilization on onset of Ca(2+) oscillations after ICSI. Hum Reprod. 2001;16:148–52.

    Article  PubMed  CAS  Google Scholar 

  8. Katayama M, Sutovsky P, Yang BS, Cantley T, Rieke A, Farwell R, et al. Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction. 2005;130:907–16.

    Article  PubMed  CAS  Google Scholar 

  9. Anzalone DA, Iuso D, Czernik M, Ptak G, Loi P. Plasma membrane and acrosome loss before ICSI is required for sheep embryonic development. J Assist Reprod Genet. 2016;33:757–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lacham-Kaplan O, Trounson A. Intracytoplasmic sperm injection in mice: increased fertilization and development to term after induction of the acrosome reaction. Hum Reprod. 1995;10:2642–9.

    Article  PubMed  CAS  Google Scholar 

  11. Morozumi K, Shikano T, Miyazaki S, Yanagimachi R. Simultaneous removal of sperm plasma membrane and acrosome before intracytoplasmic sperm injection improves oocyte activation/embryonic development. Proc Natl Acad Sci U S A. 2006;103:17661–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Seita Y, Ito J, Kashiwazaki N. Removal of acrosomal membrane from sperm head improves development of rat zygotes derived from intracytoplasmic sperm injection. J Reprod Dev. 2009;55:475–9.

    Article  PubMed  Google Scholar 

  13. Zambrano F, Aguila L, Arias ME, Sanchez R, Felmer R. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology. 2016;86:1489–97.

    Article  PubMed  CAS  Google Scholar 

  14. Yanagida K, Hatayose H, Yazawa H, Kimura Y, Konnai K, Sato A. The usefulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans. Hum Reprod. 1998;14:448–53.

    Article  Google Scholar 

  15. Takeuchi S, Minoura H, Shibahara T, Shen X, Futamura N, Toyoda N. Comparison of piezo-assisted micromanipulation with conventional micromanipulation for intracytoplasmic sperm injection into human oocytes. Gynecol Obstet Investig. 2001;52:158–62.

    Article  CAS  Google Scholar 

  16. Hiraoka K, Kitamura S. Clinical efficiency of piezo-ICSI using micropipettes with a wall thickness of 0.625 mum. J Assist Reprod Genet. 2015;32:1827–33.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galli C, Vassiliev I, Lagutina I, Galli A, Lazzari G. Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Theriogenology. 2003;60:1467–80.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Rosello E, Garcia-Mengual E, Coy P, Alfonso J, Silvestre MA. Intracytoplasmic sperm injection in livestock species: an update. Reprod Domest Anim. 2009;44:143–51.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou X, Yin M, Jiang W, Jiang M, Li S, Li H, et al. Electrical activation of rabbit oocytes increases fertilization and embryo development by intracytoplasmic sperm injection using sperm from deceased male. J Assist Reprod Genet. 2013;30:1605–10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colleoni S, Barbacini S, Necchi D, Duchi R, Lazzari G, Galli C. Application of ovum pick-up, intracytoplasmic sperm injection and embryo culture in equine practice. Proc Amer Assoc Equine Pract. 2007;53:554–9.

    Google Scholar 

  21. Hinrichs K, Choi YH, Norris JD, Love LB, Bedford-Guaus SJ, Hartman DL, et al. Evaluation of foal production following intracytoplasmic sperm injection and blastocyst culture of oocytes from ovaries collected immediately before euthanasia or after death of mares under field conditions. J Am Vet Med Assoc. 2012;241:1070–4.

    Article  PubMed  Google Scholar 

  22. Hinrichs K, Choi YH, Love CC, Spacek S. Use of intracytoplasmic sperm injection and in vitro culture to the blastocyst stage in a commercial equine assisted reproduction program. J Equine Vet Sci. 2014;34:176.

    Article  Google Scholar 

  23. Hinrichs K, Choi YH, Love LB, Varner DD, Love CC, Walckenaer BE. Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biol Reprod. 2005;72:1142–50.

    Article  PubMed  CAS  Google Scholar 

  24. Galli C, Colleoni S, Duchi R, Lagutina I, Lazzari G. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim Reprod Sci. 2007;98:39–55.

    Article  PubMed  CAS  Google Scholar 

  25. Altermatt JL, Suh TK, Stokes JE, Carnevale EM. Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Reprod Fertil Dev. 2009;21:615–23.

    Article  PubMed  CAS  Google Scholar 

  26. Foss R, Ortis H, Hinrichs K. Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet J. 2013;45:39–43.

    Article  Google Scholar 

  27. Smits K, Govaere J, Hoogewijs M, Piepers S, Van Soom A. A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos. Reprod Domest Anim. 2012;47:e1–3.

    Article  PubMed  CAS  Google Scholar 

  28. Alonso A, Baca Castex C, Ferrante A, Pinto M, Castaneira C, Trasorras V, et al. In vitro equine embryo production using air-dried spermatozoa, with different activation protocols and culture systems. Andrologia. 2015;47:387–94.

    Article  PubMed  CAS  Google Scholar 

  29. Dini P, Bogado Pascottini O, Ducheyne K, Hostens M, Daels P. Holding equine oocytes in a commercial embryo-holding medium: new perspective on holding temperature and maturation time. Theriogenology. 2016;86:1361–8.

    Article  PubMed  Google Scholar 

  30. Tremoleda JL, Van Haeften T, Stout TA, Colenbrander B, Bevers MM. Cytoskeleton and chromatin reorganization in horse oocytes following intracytoplasmic sperm injection: patterns associated with normal and defective fertilization. Biol Reprod. 2003;69:186–94.

    Article  PubMed  CAS  Google Scholar 

  31. Smits K, Govaere J, Peelman LJ, Goossens K, de Graaf DC, Vercauteren D, et al. Influence of the uterine environment on the development of in vitro-produced equine embryos. Reproduction. 2012;143:173–81.

    Article  PubMed  CAS  Google Scholar 

  32. Carnevale EM. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology. 2008;69:23–30.

    Article  PubMed  CAS  Google Scholar 

  33. Ginther OJ. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women. Theriogenology. 2012;77:818–28.

    Article  PubMed  CAS  Google Scholar 

  34. Jacobson CC, Choi YH, Hayden SS, Hinrichs K. Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology. 2010;73:1116–26.

    Article  PubMed  Google Scholar 

  35. Choi YH, Love LB, Varner DD, Hinrichs K. Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection. Theriogenology. 2006;66:955–63.

    Article  PubMed  CAS  Google Scholar 

  36. Martino NA, Dell'Aquila ME, Filioli Uranio M, Rutigliano L, Nicassio M, Lacalandra GM, et al. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential. Reprod Biol Endocrinol. 2014;12:99.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoshida M, Cran DG, Pursel VG. Confocal and fluorescence microscopic study using lectins of the distribution of cortical granules during the maturation and fertilization of pig oocytes. Mol Reprod Dev. 1993;36:462–8.

    Article  PubMed  CAS  Google Scholar 

  38. Mortimer D, Curtis EF, Miller RG. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. J Reprod Fertil. 1987;81:127–35.

    Article  PubMed  CAS  Google Scholar 

  39. Ruggeri E, DeLuca KF, Galli C, Lazzari G, DeLuca JG, Stokes JE, et al. Use of confocal microscopy to evaluate equine zygote development after sperm injection of oocytes matured in vivo or in vitro. Microsc Microanal. 2017;23:1197–206.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Faramarzi A, Khalili MA, Micara G, Agha-Rahimi A. Revealing the secret life of pre-implantation embryos by time-lapse monitoring: a review. Int J Reprod Biomed (Yazd). 2017;15:257–64.

    Article  Google Scholar 

  41. Gomez-Torres MJ, Ten J, Girela JL, Romero J, Bernabeu R, De Juan J. Sperm immobilized before intracytoplasmic sperm injection undergo ultrastructural damage and acrosomal disruption. Fertil Steril. 2007;88:702–4.

    Article  PubMed  Google Scholar 

  42. Takeuchi T, Colombero LT, Neri QV, Rosenwaks Z, Palermo GD. Does ICSI require acrosomal disruption? An ultrastructural study. Hum Reprod. 2004;19:114–7.

    Article  PubMed  Google Scholar 

  43. Ramalho-Santos J, Sutovsky P, Simerly C, Oko R, Wessel GM, Hewitson L, et al. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod. 2000;15:2610–20.

    Article  PubMed  CAS  Google Scholar 

  44. Katayama M, Koshida M, Miyake M. Fate of the acrosome in ooplasm in pigs after IVF and ICSI. Hum Reprod. 2002;17:2657–64.

    Article  PubMed  CAS  Google Scholar 

  45. Sathananthan AH, Szell A, Ng SC, Kausche A, Lacham-Kaplan O, Trounson A. Is the acrosome reaction a prerequisite for sperm incorporation after intra-cytoplasmic sperm injection (ICSI)? Reprod Fertil Dev. 1997;9:703–9.

    Article  PubMed  CAS  Google Scholar 

  46. Bourgain C, Nagy ZP, De Zutter H, Van Ranst H, Nogueira D, Van Steirteghem AC. Ultrastructure of gametes after intracytoplasmic sperm injection. Hum Reprod. 1998;13(Suppl 1):107–16.

    Article  PubMed  Google Scholar 

  47. Sutovsky P, Hewitson L, Simerly CR, Tengowski MW, Navara CS, Haavisto A, et al. Intracytoplasmic sperm injection for rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Hum Reprod. 1996;11:1703–12.

    Article  PubMed  CAS  Google Scholar 

  48. Enders AC, Liu IK, Bowers J, Lantz KC, Schlafke S, Suarez S. The ovulated ovum of the horse: cytology of nonfertilized ova to pronuclear stage ova. Biol Reprod. 1987;37:453–66.

    Article  PubMed  CAS  Google Scholar 

  49. Abbott AL, Ducibella T. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci. 2001;6:D792–806.

    Article  PubMed  CAS  Google Scholar 

  50. Liu M. The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol : RB & E. 2011;9:149.

    Article  CAS  Google Scholar 

  51. Bello OD, Cappa AI, de Paola M, Zanetti MN, Fukuda M, Fissore RA, et al. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp Cell Res. 2016;347:42–51.

    Article  PubMed  CAS  Google Scholar 

  52. Sun FZ, Bradshaw JP, Galli C, Moor RM. Changes in intracellular calcium concentration in bovine oocytes following penetration by spermatozoa. J Reprod Fertil. 1994;101:713–9.

    Article  PubMed  CAS  Google Scholar 

  53. Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, et al. Mammalian phospholipase Cζ induces oocyte activation from the sperm perinuclear matrix. Dev Biol. 2004;274:370–83.

    Article  PubMed  CAS  Google Scholar 

  54. Bedford-Guaus SJ, McPartlin LA, Xie J, Westmiller SL, Buffone MG, Roberson MS. Molecular cloning and characterization of phospholipase C zeta in equine sperm and testis reveals species-specific differences in expression of catalytically active protein. Biol Reprod. 2011;85:78–88.

    Article  PubMed  CAS  Google Scholar 

  55. Bedford-Guaus SJ, Yoon SY, Fissore RA, Choi YH, Hinrichs K. Microinjection of mouse phospholipase C zeta complementary RNA into mare oocytes induces long-lasting intracellular calcium oscillations and embryonic development. Reprod Fertil Dev. 2008;20:875–83.

    Article  PubMed  CAS  Google Scholar 

  56. Betteridge KJ, Eaglesome MD, Mitchell D, Flood PF, Bériault R. Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J Anat. 1982;135:191–209.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Hinrichs K, Love CC, Brinsko SP, Choi YH, Varner DD. In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biol Reprod. 2002;67:256–62.

    Article  PubMed  CAS  Google Scholar 

  58. Bézard J, Magistrini M, Duchamp G, Palmer E. Chronology of equine fertilisation and embryonic development in vivo and in vitro. Equine Vet J. 1989;Supp 8:105–10.

  59. Palmer E, Bézard J, Magistrini M, Duchamp G. In vitro fertilisation in the horse: a retrospective study. J Reprod Fertil. 1991;44(Supp):375–84.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Kindra Rader and Dr. Josefina Kjollerstrom for excellent technical assistance, and Dr. Roula Barhoumi Mouneimne for invaluable assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Hinrichs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Clinical Equine ICSI Program, Texas A&M University, and the Link Equine Research Fund, Texas A&M University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, R.M., Brom-de-Luna, J.G., Resende, H.L. et al. Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation. J Assist Reprod Genet 35, 825–840 (2018). https://doi.org/10.1007/s10815-018-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1174-9

Keywords

Navigation