
NBER WORKING PAPER SERIES

REVISITING THE CONNECTION BETWEEN STATE MEDICAID EXPANSIONS
AND ADULT MORTALITY

Charles J. Courtemanche
Jordan W. Jones

Antonios M. Koumpias
Daniela Zapata

Working Paper 30818
http://www.nber.org/papers/w30818

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2023

We thank conference participants at the Reforming Healthcare Markets Workshop organized by 
the Institute of Humane Studies and the Institute for the Study of Free Enterprise for valuable 
feedback. This research was supported by a grant from the Charles Koch Foundation. This 
research was supported in part by the U.S. Department of Agriculture, Economic Research 
Service. The findings and conclusions in this publication are those of the authors and should not 
be construed to represent any official USDA or U.S. Government determination or policy. This 
work was initiated before Jordan Jones’ employment at USDA, Economic Research Service. The 
views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2023 by Charles J. Courtemanche, Jordan W. Jones, Antonios M. Koumpias, and Daniela 
Zapata. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted 
without explicit permission provided that full credit, including © notice, is given to the source.



Revisiting the Connection Between State Medicaid Expansions and Adult Mortality
Charles J. Courtemanche, Jordan W. Jones, Antonios M. Koumpias, and Daniela Zapata
NBER Working Paper No. 30818
January 2023
JEL No. I1,I18,I38

ABSTRACT

This paper examines the impact of Medicaid expansions to parents and childless adults on adult 
mortality. Specifically, we evaluate the long-run effects of eight state Medicaid expansions from 
1994 through 2005 on all-cause, healthcare-amenable, non-healthcare-amenable, and HIV-related 
mortality rates using state-level data. We utilize the synthetic control method to estimate effects 
for each treated state separately and the generalized synthetic control method to estimate average 
effects across all treated states. Using a 5% significance level, we find no evidence that Medicaid 
expansions affect any of the outcomes in any of the treated states or all of them combined. 
Moreover, there is no clear pattern in the signs of the estimated treatment effects. These findings 
imply that evidence that pre-ACA Medicaid expansions to adults saved lives is not as clear as 
previously suggested.

Charles J. Courtemanche
Department of Economics
Gatton College of Business and Economics
University of Kentucky
Lexington, KY 40506-0034
and NBER
courtemanche@uky.edu

Jordan W. Jones
USDA Economic Research Service  
805 Pennsylvania Avenue  
Kansas City, MO 64105
Jordan.Jones2@usda.gov

Antonios M. Koumpias
Department of Social Sciences 
University of Michigan-Dearborn 
4901 Evergreen Rd 
SSB 2300 
Dearborn, MI 48128
koumpias@umich.edu

Daniela Zapata
American Institutes for Research  
1325 G Street NW Suite 900
Washington, DC 20005
dzapata@air.org

A online appendix is available at http://www.nber.org/data-appendix/w30818



2 
 

1. Introduction 
Theoretically, Medicaid may reduce mortality risk by improving access to medical care, 

which in turn may lead to improved physical and mental health. However, whether Medicaid in 

fact reduces adult mortality is the subject of debate in the literature. We contribute new evidence 

to this debate by using synthetic control and generalized synthetic control approaches to 

investigate the long-run mortality effects of several state Medicaid expansions in the 1990s and 

2000s.  

Several studies aim to estimate the causal effect of Medicaid on mortality. In a highly 

influential study evaluating Medicaid expansions in three states in the early 2000s, Sommers et 

al. (2012) find a statistically significant reduction in adjusted all-cause mortality of 6.1 percent 

compared to adjacent control states. However, the effect is completely driven by one of the three 

treatment states, New York, so the extent to which the results are generalizable to the entire U.S. 

is unclear. Additionally, by using county-level mortality data to study state-level expansions, the 

study overstates the amount of independent variation, thereby potentially leading to greater 

precision than is warranted and spurious findings of statistical significance. Traditional solutions 

in these situations, like clustering the standard errors by state, would not resolve the problem 

since there are few states (three treated and four control) in the sample (Bertrand, Duflo, and 

Mullainathan, 2004). Furthermore, Kaestner (2012) questions the validity of Sommers et al.’s 

(2012) difference-in-differences (DID) design because pre-intervention mortality trends in the 

treatment and control states exhibit statistically significant differences.  

Sommers (2017) aims to rebut the latter of these critiques by using propensity-score 

matching to construct the control group, finding that all-cause and healthcare amenable mortality 

declined by 6 and 6.7 percent, respectively, across the same three Medicaid expansion states and 

again using county-level data. He also finds a substantial reduction in HIV-related mortality.  
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In another prominent study, Finkelstein et al. (2013) find no evidence of an effect of a 

randomized Medicaid expansion in Oregon on adult mortality. However, the analysis may have 

lacked sufficient statistical power to detect reasonably sized effects given the relatively small 

number of deaths in the sample. 

A few newer studies examine the effects of the more recent Medicaid expansions under 

the Affordable Care Act on mortality. Black et al. (2022) argue that the ACA lacks sufficient 

power for the detection of plausible mortality effects due to the modest marginal take-up of 

health insurance in Medicaid expansion versus non-expansion states relative to the overall 

population. However, two other concurrent studies do find evidence of effects. Borgschulte and 

Vogler (2020) find a 3.6 percent decrease in all-cause mortality for adults between the ages 20 to 

64 following the ACA Medicaid expansion using data from the restricted access file of the 

National Vital Statistics System of the CDC. Miller et al. (2021) find a 9.4 percent reduction on 

mortality rates of adults aged 55 to 64 years after linking information from the American 

Community Survey to administrative data from the Census Numident file. Both ACA analyses 

are inherently short-run due to the recent nature of the policy, and effects could become either 

stronger or weaker in the long run. Moreover, the ACA’s expansions, which were accompanied 

by great publicity, substantial outreach expenditures, and an overhaul of the health care system 

along several dimensions, may not affect health the same way as other state expansions.   

The purpose of this paper is to examine the effect of the largest state Medicaid 

expansions in the 1990s and 2000s on all-cause, healthcare-amenable, non-healthcare-amenable, 

and HIV-related adult mortality using state level mortality data. By doing so, we revisit the 

analyses of Sommers et al. (2012) and Sommers (2017), but with several important differences. 

First, we use more expansion states – eight instead of three – because we include not only 
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expansions of traditional Medicaid but also those made through a Section 1115 waiver.1 Second, 

we examine a longer time horizon – nine post expansion years instead of the six used by 

Sommers (2017) and the even smaller period used by Sommers et al. (2012).2 This is an 

important distinction as one may expect effects on mortality to be gradual since health capital 

accumulates as a stock (Grossman, 1972). However, it is also possible that mortality reductions 

emerge in the short run and then disappear if there is pent-up demand when individuals first 

become insured. Third, we use state-level mortality data instead of county-level data. Since 

Medicaid expansions happened at the state level, and not at the county level, using state-level 

data guards against potentially overstating statistical significance, as noted above. Fourth, we 

estimate state-specific causal effects using the synthetic control method (SCM) developed by 

Abadie, Diamond, and Hainmueller (2010). To estimate the overall causal effect of state 

Medicaid expansions on mortality across all treated states, we use a generalized synthetic control 

method (GSCM), an extension of the SCM that allows for multiple treatment groups and 

different treatment timing (Xu, 2017). These methods allow the data to determine the appropriate 

control group rather than relying on hand-matching of border states, as in Sommers et al. (2012). 

Additionally, while the propensity score matching method of Sommers (2017) is also data-

driven, it only allows for matching on observable covariates, whereas SCM and GSCM also 

allow for matching on pre-treatment levels and trends in the outcome variable. 

Using a 5% significance level, our SCM and GSCM results provide no evidence of any 

effects of expanding Medicaid on all-cause, healthcare-amenable, non-healthcare-amenable, or 

                                                            
1 The expansion states included in our analysis are AZ, IL, ME, MI, NM, NY, OR, and VT. The expansion states 
included in both Sommers papers are AZ, ME, and NY.  
2 Sommers, 2012 uses 5 post expansion years. We use nine post expansion years, inclusive of the year of the 
Medicaid expansion, to estimate the overall causal effect of state Medicaid expansions across all treated states using 
GSCM and the state level causal effects using SCM. 
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HIV-related mortality, either in any of the treated states separately or in all of the treated states 

combined. The only estimate that is even significant at the 10% level is a reduction in non-

healthcare-amenable mortality in Illinois. Moreover, there is no clear pattern in the signs of the 

coefficient estimates, as there are roughly equal numbers of positives and negatives.  

The main implication of our results, when combined with the prior literature, is that one 

should not assume that state Medicaid expansions automatically lead to reductions in adult 

mortality. Instead, the effects of each expansion are likely dependent on a number of factors, 

such as the availability of services and providers for Medicaid enrollees, the demographic 

characteristics of the population, and other concurrent changes in the health care system.  

 

2. Data 

Prior to the enactment of the ACA Medicaid expansions in 2014, 16 states expanded 

Medicaid coverage (Centers for Medicare & Medicaid Services, 2022; Kronick and Gilmer, 

2002; Mann, 2002; Coughlin and Zuckerman, 2008; Atherly et al., 2012). These Medicaid 

expansions differed in terms of their scope of coverage, pre-existing eligibility levels, targeted 

adult groups, and benefit design as described in Table 1. For instance, income eligibility 

thresholds ranged from 35% of the FPL to 200% of the FPL. To address the non-uniform nature 

of these expansions and establish a strong implied first-stage of Medicaid insurance take-up, we 

focus on states with sizable expansions of coverage, measured by the number of Medicaid 

beneficiaries per capita.  

To determine what constitutes “sizable” expansions, we use two-sample t-tests to assess 

the magnitude and statistical significance of the increase in the number of Medicaid beneficiaries 

per capita in the five years following the expansion or [t+1, t+5] (excluding the expansion year) 
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relative to the five years prior or [t-5, t-1]. We then define a “sizeable” expansion as one of at 

least 3.5 percentage points, where that number is chosen because it approximately corresponds to 

the smallest increase in the three states classified as treated by Sommers et al. (2012) and 

Sommers (2017) (3.8 percentage points in New York). Applying this rule, we are left with 10 

states with sizable expansions of coverage. From those, we drop Massachusetts because the 

expansion occurred as part of a broader health care reform that also included a large expansion of 

subsidized private coverage. We also drop Tennessee because its expansion was followed by a 

contraction within our post-treatment period, diluting the potential long-run impact. Ultimately, 

then, we classify eight states as treated: Arizona, Illinois, Maine, Michigan, New Mexico, New 

York, Oregon, and Vermont.  

We use the Compressed Mortality File of the Centers for Disease Control and Prevention 

(CDC) from 1980 to 2013. Our main outcome of interest is all-cause mortality per 100,000 

adults ages 20-64. In addition, we examine mortality amenable by healthcare, mortality non-

amenable by healthcare, and HIV-related mortality per 100,000 adults ages 20-64.3 We would 

not generally expect Medicaid to have much influence on mortality from conditions that cannot 

be influenced by health care. Therefore, the analyses for non-healthcare-amenable mortality can 

be loosely interpreted as placebo tests. HIV-related mortality can be considered a relatively 

extreme example of healthcare-amenable, as it is always fatal when untreated and almost never 

fatal when treated with expensive medications.  

                                                            
3 Following Nolte and McKee (2012), healthcare amenable mortality is defined as deaths potentially preventable 
given effective and timely health care from the following causes of death as classified by the International 
Classification of Diseases (10th revision): infectious diseases (A00-9, A15-9, A35, A36, A37, A80, B05, B90), 
tumors (C18-21, C44, C50, C53, C54, C55, C62, C81, C91-5), diabetes (E10-4), heart (I20-5, I05-9, I10-3, I15, I60-
9) and respiratory (J00-9, J20-99, J10-1, J12-8) diseases as well as surgical (K25-7, K35-8, K40-6, K80-1, N00-
7,N17-9, N25-7, N40), maternal (O00-99, Q20-8), pre-natal (P00-96, A33) or other (E00-7, G40-1) conditions.    
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Our regressions include control variables for annual state-level unemployment rate, 

median income, number of Medicaid beneficiaries and the following percentages: poverty rate; 

married; female; high school degree (among those 25 and older); population aged 20-34, 35-44, 

45-54, and 55-64; and race/ethnicity white, Hispanic or other. Socio-economic characteristics 

were obtained from the Bureau of Labor Statistics, demographic information comes from the 

Census, and Medicaid enrollment data are sourced from the University of Kentucky Center for 

Poverty Research.4 Summary statistics are given in Appendix Table A.1. 

 

3. Econometric Methods 

3.1 Difference-in-Differences  

We begin with a naïve difference-in-differences design (DID) to examine mortality in 8 

expansion states using 35 non-expansion states as controls. States that had a Medicaid expansion 

that we do not include in the treatment group, for the reasons discussed above, are omitted from 

the sample. The DID estimate shows the effect of Medicaid on mortality rate in all expansion 

states over the span of two decades relative to the national average in non-expansion states. 

Implicitly, this approach uses a linear combination of the untreated units with coefficients that 

sum to one. In other words, the regression estimator could also be considered as a weighting 

estimator with weights that sum up to one. However, there is no restriction on the values these 

weights may take, enabling extrapolation outside the support of the data (Abadie, Diamond, and 

Hainmueller, 2014).  

                                                            
4 University of Kentucky Center for Poverty Research. (2020, May). UKCPR National Welfare Data, 1980-2018. 
Lexington, KY. 
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The identifying assumption for a causal interpretation of the parameter of interest in the 

DID design is that, conditional on the other covariates, pre-intervention changes in mortality 

would have been the same in expansion and non-expansion states in the absence of the 

intervention (“parallel trends”). Given numerous possible reasons to doubt the validity of this 

assumption, we do not consider the DID estimates to reflect causal effects. Instead, we show 

them purely for the purpose of comparison to our preferred approaches. We present DID 

estimates both for the whole sample and for samples including just one treated state at a time. 

In the absence of individual-level information where Medicaid eligibility or enrollment 

could be matched to mortality, it is important to stress that the effects should be interpreted as 

intent-to-treat effects of legislative expansion of Medicaid eligibility levels on mortality rates. 

The direct effect of Medicaid on the newly enrolled beneficiaries cannot be ascertained with the 

aggregate date we use and, thus, our coefficient estimates do not reflect the treatment effect on 

the treated population or on average.  

We estimate the following specification in the DID design: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑿𝑿′𝜷𝜷 + 𝜇𝜇𝑡𝑡 + 𝛺𝛺𝑖𝑖 + 𝜀𝜀𝑖𝑖                    (1) 

where 𝑖𝑖 and 𝑡𝑡 index state and year, respectively. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙 indicates whether state 𝑖𝑖 

expanded Medicaid in year 𝑡𝑡. 𝑿𝑿 is a vector of demographics (percentage of the population that is 

white, black, Hispanic, female, and age indicators for groups 20-34, 35-44, 45-54, and 55-64 

years old), poverty rate, logarithm of median income (measured in constant 2012 dollars), 

unemployment rate, and percentage of the population with a high school diploma and percentage 

of the population that is married. Finally, we include year and state fixed effects 𝜇𝜇𝑡𝑡 and 𝛺𝛺𝑖𝑖, 

respectively. We present unweighted estimates so that they can be interpreted as the effect of the 

average Medicaid expansion (as opposed to the effect on the average person in the U.S. 
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population). The parameter of interest is 𝛽𝛽1, which denotes the effect of the state Medicaid 

expansion on each mortality rate of interest. 

3.2 Synthetic Control  

 Next, we turn to the SCM, a data-driven procedure introduced by Abadie et al. (2010), 

with the intention to examine the effect of state Medicaid expansions on adult mortality on each 

individual state. For each treated state, the control state is a weighted average of states that did 

not expand Medicaid and that most closely resemble pre-intervention mortality. The intuition 

behind the approach is that a combination of units often provides a better comparison for the unit 

exposed to the intervention than any single unit alone. This offers reasonable counterfactuals of 

mortality rates in treated states if the expansion had not occurred. The procedure reweights the 

control group such that the synthetic control expanding states match observable characteristics 

and pre-intervention mortality values. Unlike the regression approach, the SCM estimator 

assigns weights ranging between zero and one to shield off extrapolation bias. This prevents 

estimation of “extreme counterfactuals” by forcing to show the proximity between treated and 

control.  

For identification, a SCM makes two implicit assumptions. First, there exists no 

interference between units that comprise the donor pool (Rosenbaum, 2007). Given the state-

specific nature of the expansion and our state-year panel, this holds by design. More importantly, 

unbiasedness requires that there exists a synthetic control with a vector of weights 

𝑾𝑾∗ = �𝑤𝑤2∗, … ,𝑤𝑤𝐽𝐽+1∗ �𝑤𝑤𝑗𝑗∗ ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 2, … , 𝐽𝐽 + 1 ,𝑤𝑤2∗ + ⋯𝑤𝑤𝐽𝐽+1∗ = 1�                     (2) 

a vector 𝒁𝒁𝑖𝑖 of observed covariates (unaffected by the intervention), and a vector 𝝁𝝁𝑖𝑖 of unknown 

factor loadings such that 
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�𝑤𝑤𝑗𝑗∗
𝐽𝐽+1

𝑗𝑗=2

𝒁𝒁𝑗𝑗 = 𝒁𝒁1,�𝑤𝑤𝑗𝑗∗
𝐽𝐽+1

𝑗𝑗=2

𝝁𝝁𝑗𝑗 = 𝝁𝝁1                                                   (3) 

Even if equation (2) holds only approximately for a synthetic control that fits well but not 

perfectly the treated state, the bias of the estimator will tend to zero as the number of pre-

intervention treatment periods increases. For the DID and SCM analyses, the post-intervention 

period starts the first full year after the Medicaid expansions and it extends for 8 years. The 

estimated treatment effect uses information from both the intervention and the 8 post-

intervention years and represents the average change in mortality rates in each state over a total 

of 9 Medicaid expansion years.  The pre-intervention period is defined as the 13 years leading up 

to the expansion. This is the maximum common number of pre- and post-intervention years that 

can be accommodated for all states. By using the same number of pre- and post-treatment 

periods for each state, we can easily transition into the national-level estimation where we pool 

all treated and all control units together. 

Inference is based on placebo tests in time and space. The placebo test in space estimates 

the probability of finding mortality reductions of the magnitude of the observed reduction in 

treated states under a random permutation of the expansion to generate the p-values of our 

estimated effects. To implement the SCM numerically, we solve a nested optimization problem. 

First, we minimize the multivariate distance between values of mortality predictors  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖  and 𝑿𝑿 of states expanding Medicaid to their corresponding synthetic 

controls subject to weight constraints 𝑾𝑾 ranging [0,1]. Then, we introduce matrix 𝑽𝑽 that applies 

different weights to each mortality predictor  depending on each predictive power. Our choice of 

𝑽𝑽 assigns weights that minimize the mean square error of the synthetic control estimator. 
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Based on weights calculated by the SCM, our main results come from estimation of the 

factor model in equation (3) below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑡𝑡 + 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳′𝝁𝝁 + 𝑿𝑿′𝜷𝜷 + 𝝀𝝀𝒕𝒕𝝁𝝁𝒊𝒊 + 𝜀𝜀𝑖𝑖𝑖𝑖                                (4)  

where 𝑖𝑖 indexes state and 𝑡𝑡 year. The parameter 𝛿𝛿𝑡𝑡 is an unobserved, common, time-dependent 

factor. 𝑿𝑿now contains a larger set of observed state-year demographic and socio-economic 

information; namely, the percentage of the population that is white, black, Hispanic, female, and 

age indicators for groups 20-34, 35-44, 45-54, and 55-64 years old,  poverty rate, logarithm of 

median income, unemployment rate, and percentage of the population with a high school 

diploma and percentage of the population that is married as previously and, additionally, 

logarithm of population and logarithm of Medicaid beneficiaries.. The term 𝝀𝝀𝒕𝒕𝝁𝝁𝒊𝒊 captures 

heterogeneous responses to multiple observed factors. Finally, 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳is a vector of year indicators 

including lagged outcome terms. The choice of the latter is data-driven and based on which lag 

results to the lowest Mean Squared Prediction Error (MSPE). However, we refrain from using 

more than two pre-treatment outcome lags in any specification to avoid overfitting and use the 

average pre-expansion mortality rate, and in most specifications, a one-year lag and a ten-year 

lag.  

3.3 Generalized Synthetic Control  

  Finally, we use a GSCM approach to estimate the overall average effect that the various 

state-level Medicaid expansions had on adult mortality. GSCM combines the SCM with linear 

interactive fixed effects models introduced by Xu (2017). GSCM generates counterfactuals for 

each Medicaid-expanding state using information from non-expanding states by estimating a 

linear interactive fixed effects model of state-specific intercepts interacted with time-varying 
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coefficients. Unlike the SCM, the GSCM estimator performs “dimension reduction prior to 

reweighting” to ensure the values of the control variables are smooth across non-Medicaid 

expanding states. This is akin to bias-correction in the presence of heterogeneous treatment 

effects across states which is the case in this analysis. The GSCM has several appealing features 

which are relevant to our analysis. Contrary to the state specific SCM, it is much more flexible 

since it allows for multiple treated states that may have expanded at different years. This permits 

the estimation of a single, policy-informative intent-to-treat effect for all Medicaid-expanding 

states to the estimation of eight, state-specific estimates for each state that expanded Medicaid in 

the sample. In addition, it generates conventional p-values based on frequentist statistics for 

uncertainty analysis as opposed to pseudo p-values from randomization inference leading to 

increased efficiency given correct model specification. Finally, it uses a cross-validation 

techniques for the selection of control variables that minimizes concerns of overfitting. For more 

details on the GSCM, please refer to Xu (2017). O’Neill et al. (2020) provide a comparison of 

DID, SCM, interactive fixed effects (IFE) and GSCM methods in the context of evaluating 

hospital practices in England. GSCM emerges as the preferred method in  their analysis on the 

basis of simulation results indicating it outperforms the other methods in robustness to the 

assumption of parallel trends and heterogeneous effects, echoing results in Xu (2017). 

For identification and estimation, the GSCM makes five implicit assumptions. First, the 

error term of any state at any year is not correlated with the decision to expand Medicaid, 

observed controls, as well as “unobserved cross-sectional and temporal heterogeneities” of all 

states, including the state itself, at all years (strict exogeneity). Second, the treatment indicator 

can be correlated with both observed control and the interaction of unobserved factors with their 

factor loadings for any state at any year. Third, for consistent estimation, there may be weak 
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serial dependence of the error terms, but they are required to be independent of controls while 

error terms of different states are uncorrelated. Fourth, convergence of the GSCM estimator 

relies on specific moment conditions. Finally, for valid inference it is also assumed that error 

terms are cross-sectionally independent and homoscedastic, albeit they can be heteroscedastic 

across time.  

It should be noted that inference is carried out for the intent-to-treat effect based on the 

drawn sample, not the entire population, implying no uncertainty estimates for the individual, 

state-specific intent-to-treat effects, just for final intent-to-treat effect of all Medicaid expansions 

on mortality. Moreover, these estimates are based on a post-intervention period which includes 

the Medicaid expansion year, and, thus, spans 9 years and a pre-intervention period of 13 years. 

Our main results come from estimation of the linear factor model in equation (5) below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑿𝑿′𝜷𝜷 + 𝝀𝝀𝒊𝒊𝒇𝒇𝒕𝒕 + 𝜀𝜀𝑖𝑖𝑖𝑖                                     (5)  

where 𝑖𝑖 indexes state and 𝑡𝑡 year. The variable 𝐷𝐷𝑖𝑖𝑖𝑖 denotes whether state i in year t has expanded 

Medicaid (𝐷𝐷𝑖𝑖𝑖𝑖 = 1) or not (𝐷𝐷𝑖𝑖𝑖𝑖 = 0) and parameter 𝛿𝛿𝑖𝑖𝑖𝑖 is  the heterogeneous intent-to-treat effect 

on state i at year t. The vector 𝑿𝑿 contains observed state-year demographic and socio-economic 

information; namely, the percentage of the population that is white, black, Hispanic, female, and 

age indicators for groups 20-34, 35-44, 45-54, and 55-64 years old,  poverty rate, logarithm of 

median income, unemployment rate, and percentage of the population with a high school 

diploma and percentage of the population that is married. The vector 𝒇𝒇𝒕𝒕 is a collection of 

unobserved common factors whereas parameter vector 𝝀𝝀𝒊𝒊 has the associated factor loadings. A 

cross-validation procedure is followed to select the number of unobserved factors that identifies 

that three factors minimize MSPE. Taken together, the term 𝝀𝝀𝒊𝒊𝒇𝒇𝒕𝒕 captures heterogeneous 

responses to multiple unobserved factors.  



14 
 

We calculate the average intent-to-treat effect (ITT) for all states i at year t as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 =
1
𝑁𝑁𝑡𝑡𝑡𝑡

� [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡]
𝑖𝑖

=  
1
𝑁𝑁𝑡𝑡𝑡𝑡

� 𝛿𝛿𝑖𝑖𝑖𝑖
𝑖𝑖

    (6) 

where 𝑁𝑁𝑡𝑡𝑡𝑡 denotes the number of states that expanded Medicaid in year t while 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡 the mortality rate in states that did and did 

not expand Medicaid, respectively. The uncertainty estimates of the GSCM estimator are 

computed via parametric bootstrap using 1000 runs. 

4.  Results 

4.1 National Analyses  

We begin our discussion of results with the naïve DID estimates from analyses that pool 

together all treated and control states. In the row labeled “Difference-in-differences” in Table 2 

we see that, using the joint sample of US states, the DID estimates are negative for all four 

mortality outcomes, indicating that expanding Medicaid saves lives. Our estimate for all-cause 

mortality is 11.7 fewer deaths per 100,000 adults, which is smaller than Sommers et al.’s (2012) 

estimate of 19.6. Also, due likely to our use of state-level rather than county-level data, our 

standard errors are more conservative, and none of the estimates are statistically significant. 

Moreover, Sommers et al.’s (2012) point estimate for all-cause mortality would not be 

significant either with our standard error. Our point estimates represent 3.3%, 5.2%, 3.0%, and 

17.3% of the baseline means of all-cause, healthcare-amenable, non-healthcare-amenable, and 

HIV-related mortality, respectively. Based on the low end of the 95% confidence intervals, we 

can rule out reductions in mortality larger than 12.0%, 14.9%, 11.8%, and 94.0%. The effect on 
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HIV-related mortality, in particular, is therefore potentially quite large, even though we cannot 

conclude that it is statistically different from zero.  

 Next, we turn to the GSCM results, shown in the row labeled “Generalized synthetic 

control method” in Table 2. Using this more rigorous method flips three of the four coefficient 

estimate signs to positive, and all four estimates are statistically insignificant. For the only 

outcome for which Medicaid expansion continues to be associated with reduced mortality, 

healthcare-amenable mortality, the magnitude represents .53% of the baseline mean. Based on 

the confidence intervals, we can rule out reductions in all-cause, healthcare-amenable, non-

healthcare-amenable, and HIV-related mortality of greater than 4.3%, 9%, 3.9%, and 42.9%, 

respectively. Figure 1 plots mortality rate trends in treated states and the synthetic counterfactual 

based on GSCM. Figure 2 reports the GSCM estimate of Medicaid’s ITT effect graphically, with 

separate coefficients for each year relative to Medicaid expansion.5 The figure shows that for all 

four outcomes the pre-treatment trends are quite flat and close to zero, and a Wald test ,for a 

related IFE specification not reported here, reveals no differential pre-treatment trends between 

the expansion and non-expansion states. This provides evidence to support the parallel trends 

assumption, therefore supporting a causal interpretation of the post-treatment results.  

 In sum, when using our preferred method, the GCSM, to evaluate the average effect of 

expanding Medicaid among expanding states, we find signs and point estimates that are 

consistent with either no effect or a relatively small effect on all-cause and different types of 

mortality. However, the relatively imprecise nature of the estimates means that we cannot 

                                                            
5 Please, note GSCM’s graphical convention under which the vertical line in the GSCM figures marks the end of the 
pre-intervention period and is, thus, included in the 13 pre-expansion years of the study sample as opposed to the 9 
expansion years that follow. 
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conclusively rule out sizeable effects, particularly for healthcare-amenable and HIV-related 

mortality. 

4.2 Separate Analyses for Each State  

Next, we narrow-in on each state that expanded Medicaid. The row labeled “Difference-

in-differences” in panels A and B of Table 3 reports the state-specific DID estimates of the 

intent-to-treat effect of state Medicaid expansions on the all-cause mortality rate per 100,000 

adults aged 20-64, along with their standard errors in parentheses. We observe statistically 

significant and relatively large estimates for all-cause mortality in three states. In two of these 

states – Illinois and New York – Medicaid expansions are associated with lower mortality, while 

in the third – New Mexico – the association is actually positive (more mortality). Since there is 

little theoretical reason for Medicaid expansions to increase mortality, the existence of such a 

positive “effect” calls into question the validity of the DID research design. In the other five 

states, Medicaid expansion is statistically insignificant and its point estimate is relatively small; 

its sign is negative in Arizona and Vermont and positive for Maine, Michigan, and Oregon. 

Broadly, these single-state DID results are in line with those from Sommers et al. (2012): they 

and we both find a statistically significant all-cause mortality reduction in New York, a null 

effect in Arizona, and a sign flip to positive for Maine.  

These state-by-state results show why we find a somewhat smaller overall effect of all 

Medicaid expansions than did Sommers et al. (2012). In the five states we examined that they did 

not, there is no discernable pattern of results (one negative and significant estimate, one positive 

and significant estimate of roughly the same size, one negative and insignificant estimate, and 

two positive and insignificant estimates). Therefore, one would expect the overall effect size to 

be attenuated relative to a sample with only three treated states that includes the one with the 
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largest mortality reduction. Recall that one of the questions we set out to answer was whether 

New York’s experience of a large mortality reduction from expanding Medicaid was an 

exception or the rule. These results suggest that it was an exception.  

Next, we turn to the SCM results for all-cause mortality, reported in the row labeled 

“Synthetic control method” in Panels A and B of Table 3. P-values from permutation tests are in 

brackets below the point estimates. We observe no statistically significant estimates for any of 

the eight states, and there is no clear pattern of signs (five negative, three positive). Moreover, 

using the SCM method substantially attenuates the large point estimates observed with DID for 

Illinois, New Mexico, and New York. New York’s, for instance, shrinks by 76%, and its p-value 

rises to a very high 0.75. In other words, once more rigorous methods are used, even New York’s 

experience with expanding Medicaid may not be as beneficial as first thought. 

Turning to healthcare-amenable mortality rates in Table 4, we observe broadly similar 

results. Using DID, we find significant reductions in healthcare-amenable mortality rates in 

Illinois, New York and Vermont but increases in New Mexico. The point estimates in the other 

four states are small and statistically insignificant, with two being positive and two negative. 

When using SCM, all significance disappears, and the effect sizes in Illinois, New York, 

Vermont, and New Mexico shrink dramatically.  

Results for non-healthcare-amenable mortality are shown in Table 5. We observe 

statistically significant results in four of the eight states when using DID: mortality reductions in 

Illinois and New York and increases in Maine and New Mexico. Moreover, the effect sizes for 

non-healthcare-amenable mortality in those states are all larger than those for healthcare-

amenable mortality. This seems theoretically implausible and therefore questions the validity of 

the DID research design. Two of the four insignificant estimates are positive and the other two 
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are negative. When using SCM, the results all become insignificant, with the exception of a 

marginally significant and relatively small reduction in Illinois. Moreover, the largest point 

estimates (those in Illinois, New Mexico, and New York) all shrink dramatically. Four estimates 

are positive and the other four negative.  

Finally, Table 6 reports results for HIV-related mortality rates. Data are not available for 

Maine and Vermont, so we examine only the six remaining states. Using DID, we observe a 

large, significant reduction in mortality in New York, as well as smaller but significant (at the 

10% level or better) increases in mortality in Michigan and New Mexico. In the other states, two 

coefficient estimates are positive and the other negative. Using SCM, there are again no 

statistically significant effects, and the largest ones found when using DID are substantially 

attenuated. Five estimates are negative and only one positive; given the lack of statistical 

significance, this could merely be a coincidence.  

The figures in the online appendix depict the single-state synthetic control results 

graphically. We plot the all-cause mortality rate trend in each of the eight treated states and their 

synthetic counterfactuals. We also report the SCM estimate of Medicaid’s ITT effect on all-cause 

mortality graphically, with separate coefficients for each year of treatment time.  

Overall, then, our results indicate mixed patterns of signs and significance when using 

DID, and a mixed pattern of signs with no statistical significance (at the 5% level) when using 

SCM. We therefore are unable to conclude that the Medicaid expansions had any discernable 

effects on any of the mortality outcomes in any of the expansion states. 

 
5. Conclusion 

 This paper evaluates the effect of eight state Medicaid expansions in the 1990s and 2000s 

on state-level mortality rates, including all-cause, healthcare amenable, non-healthcare-
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amenable, and HIV-related mortality. Our preferred methods are GSCM for a pooled nationwide 

analysis and SCM for one-state-at-a-time analyses. Using these methods, we find no evidence 

that Medicaid expansion reduces any of the four mortality measures in any individual state or 

across all treated states as a whole. Estimates are never statistically significant at the 5% level, 

the pattern of signs is mixed, and magnitudes are generally small. However, the confidence 

intervals in some cases are quite wide – most notably for the whole-country analyses of 

healthcare-amenable and HIV-related mortality. This is consistent with Black et al.’s (2022) 

argument that the aggregate-level information we rely on might have limited ability to detect 

mortality reductions. We therefore stop short of claiming that our results show conclusively that 

Medicaid expansions do not have any effect on mortality at all. Rather, we argue merely that the 

evidence that pre-ACA Medicaid expansions to adults saved lives is not as clear as suggested by 

previous research (Sommers et al., 2012; Sommers 2017).   

Our findings stand in contrast to results from recent studies on the ACA Medicaid 

expansion. Miller et al. (2021) found a statistically significant reduction in mortality of 9.4 

percent – a magnitude that we can rule out according to our 95% confidence interval for the 

GSCM estimate for all-cause mortality. A plausible explanation for this discrepancy is the fact 

that Miller et al. (2021) focused exclusively on a relatively less healthy age group, the near 

elderly aged 55-64 years. In unreported regressions (available upon request), we repeat our 

analyses restricting the sample to 45-64 year olds, which is more similar to Miller et al.’s (2021) 

age profile. Using the GSCM, we estimate null ITT effects of Medicaid expansions on 

nationwide all-cause (δ = 4.719 all-cause deaths per 100,000 individuals, SE=17.364), 

healthcare-amenable (δ = -3.879 healthcare-amenable deaths per 100,000 individuals, SE=7.295 

), healthcare non-amenable (δ =  6.253 healthcare non-amenable deaths per 100,000 individuals, 
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SE=13.324), HIV-related (δ = 1.429 HIV-related deaths per 100,000 individuals, SE= 4.024) 

mortality rates of adults between 45 and 64 years old. Since the effect on healthcare amenable 

mortality, the outcome most likely influenced by Medicaid expansions, becomes an order of 

magnitude more negative, the evidence is somewhat stronger for reduced mortality for this age-

restricted sample than for the full sample of non-elderly adults; however, Miller et al.’s (2021) 

results are much less ambiguous. Additionally, Borgschulte and Vogler (2020) use county-level 

information and find a 3.6 percent mortality reduction in matched counties following ACA 

Medicaid expansions. This magnitude is within the 95% confidence interval from our GCSM 

regression for all-cause mortality, so even though our conclusion differs from theirs, the results 

are not necessarily conclusively different.  

All that said, it is plausible that the ACA Medicaid expansions could have reduced 

mortality even if prior state Medicaid expansions did not. The ACA expansions were widely 

publicized and occurred amidst much fanfare, potentially leading to greater take-up (and 

therefore clearer mortality effects) than prior state expansions. Consistent with this theory, Frean 

et al. (2017) found evidence of a “woodwork effect” from the ACA’s Medicaid expansion, where 

individuals who were eligible for Medicaid even before the ACA took up coverage as a result of 

the ACA. In that case, it is not obvious that evidence from the ACA expansions is more relevant 

for future state-level expansions than our evidence from pre-ACA state expansions. Future one-

state-at-a-time expansions presumably would not occur alongside widespread fanfare about 

sweeping health care reform. Circumstances surrounding their adoption may well be more 

similar to those from the 1990s and 2000s expansions that we study.  

In short, the effect of Medicaid expansions on mortality could vary across time, space, 

age, take-up rate, and a host of other factors. Nonetheless, our consistent finding of null effects 
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with mixed signs and modest magnitudes across eight expansions in eight different states over 

two decades is noteworthy.  
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Table 1. Changes in Medicaid Enrollment in Expanding States 
State Expansion 

Year 
Expansion Details (% of FPL)  Medicaid 

beneficiaries 
per capita, 5 
Years Before 

Medicaid 
beneficiaries 
per capita, 5 
Years After 

PP Change 
from Before to 

After (%Δ) 

Included 
by 

Sommers 
et al.? 

Included 
by Us Pregnant 

women 
Parents Childless 

Adults 

          

Arizona 2001 - 200% 100% .107 .174 .067*** (62.6) Yes Yes 

          

Hawaii 1993 185% 100% 100% .081 .067 .014 (17.3) No No 

Illinois 2002 - 185% 185% .115 .153 .038*** (33) No Yes 

Maine 2002 (‘89-’93: 
100%) 

(‘89-’93: 
100%) 

100% .142 .205 .063*** (44.4) Yes Yes 

Massachusetts  2006 150% (free) 
300% 

(subsidized) 

150% (free) 
300% 

(subsidized) 

150% (free) 
300% 

(subsidized) 

.152 .185 .072*** (47.4) No No 

Michigan 2004 - - 35% .116 .162 .046*** (39.7) No Yes 

Minnesota 1992 - 185% 
(1993: 
275%) 

(1994: 
125%) 

.091 .093 .002 (2.2) No No 

New Mexico 2005 200% 200% 200% .20 .233 .037* (18.5)  No Yes 

New York 2001 - 150% 100% .164 .203 .038*** (23.2) Yes Yes 

Oregon 1994 100% 
(2002: 
170%) 

100% 
(2002: 
185%) 

100% .094 .144 .05*** (53.2) No Yes 



25 
 

Rhode Island 2005 185-250% 185% - .161 .181 .019*** (11.8) No No 

Tennessee 1994 400% 400% 400% .151 .279 .128*** (84.8) No Yes 

Utah 2002 150% 150% 150% .71 .81 .01 (1.4) No No 

Vermont 1995 150% 150% 150% .134 .192 .058*** (43.3) No Yes 

Washington 1993 - - 200% .101 .119 .017** (16.8) No No 

Wisconsin 1999 (2008: 
300%) 

185% (2008: 
185%) 

.088 .116 .028** (31.8) No No 

Notes: * indicates 5-year change in percent of the population on Medicaid is statistically significant at the * 10% level, ** 5% level, *** 1% level. Dash indicates 
no expansion for that particular group; for pregnant women and parents, this means eligibility was already at least as generous as the new cutoff for childless 
adults even before the expansion. 
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Table 2: Nationwide Estimates of Medicaid Expansions’ Effect on Adult Mortality Rates 
 (1) (2) (3) (4) 

 All-cause Healthcare 
amenable 

Healthcare     
Non-amenable 

HIV 

     
Difference-in-differences -11.70 -2.384 -9.320 -2.102 
 (15.55) (2.169) (13.67) (4.567) 
 [-43.078, 19.668] [-6.761, 1.992] [-36.904, 18.263] [-11.404, 7.199] 
     
Generalized synthetic control method 2.217 -0.240 4.270 1.493 
 (8.990) (1.960) (8.464) (3.413) 
 [-15.403,19.837] [-4.082, 3.602] [-12.319,20.859] [-5.196, 8.182] 
     
Baseline mortality rate (per 100,000 adults) 358.986 45.419 313.567 12.126 
     
Notes: Estimates based on a sample of eight Medicaid expansion states and a donor pool of 35 control states including the District of 
Columbia over 13 years pre- and 9 years post-expansion, including the expansion year.  Demographic (% female, black, white, 
Hispanic, age cohort) and economic (educational attainment, marital status, unemployment rate, poverty rate, logarithm of income, in 
the DID estimates only logarithm of Medicaid beneficiaries) but omitted from presentation. Lower and upper bounds of 95% 
confidence intervals and standard errors reported in brackets and parentheses, respectively. Standard errors clustered at the state level 
in the DID models, obtained using parametric bootstrapping involving 1,000 bootstrap runs in the Generalized SCM models *** 
p<0.01, ** p<0.05, * p<0.



Table 3: State-Specific Estimates of Medicaid Expansions’ Effect on All-Cause Adult Mortality Rate 
 (1) (2) (3) (4) 

Panel A: AZ IL ME MI 
Difference-in-differences -5.940 -44.40*** 12.17 8.994 
 (7.543) (7.737) (7.737) (8.099) 
     
Synthetic control method -10.595 -10.517 18.763 6.786 
 [0.194] [0.222] [0.194] [0.500] 
     
Baseline mortality rate (per 100,000 adults) 344.402 352.859 311.433 347.978 
     
 (5) (6) (7) (8) 
Panel B: NM NY OR VT 
Difference-in-differences 40.55*** -98.90*** 7.188 -5.893 
 (8.263) (7.543) (5.858) (6.285) 
     
Synthetic control method -1.080 -23.780 8.700 -9.432 
 [0.684] [0.750] [0.750] [0.694] 
     
Baseline mortality rate (per 100,000 adults) 350.718 382.114 336.674 313.216 
     

Notes: Estimates based on sample of one Medicaid expansion state and a donor pool of 35 control states including the District of 
Columbia and observations 13 years pre- and 9 years post-expansion.  Demographic (% female, black, white, Hispanic, age cohort) 
and economic (educational attainment, marital status, unemployment rate, poverty rate, logarithm of income, logarithm of Medicaid 
beneficiaries) but omitted from presentation. Pseudo p-values based on permutation tests in brackets. *** p<0.01, ** p<0.05, * p<0.1. 



Table 4: State-Specific Estimates of Medicaid Expansions’ Effect on Healthcare-Amenable Adult Mortality Rate 
 (1) (2) (3) (4) 

Panel A: AZ IL ME MI 
Difference-in-differences 1.009 -4.114*** -2.166 -0.828 
 (1.366) (1.381) (1.381) (1.392) 
     
Synthetic control method 1.500 0.895 -0.285 2.221 
 [0.917] [0.639] [0.611] [0.167] 
     
Baseline mortality rate (per 100,000 adults) 39.732 51.406 35.737 46.836 
     
 (5) (6) (7) (8) 
Panel B: NM NY OR VT 
Difference-in-differences 5.764*** -13.06*** 0.107 -5.388*** 
 (1.418) (1.366) (1.146) (1.171) 
     
Synthetic control method 3.650 -3.232 0.207 -1.515 
 [0.389] [0.750] [0.639] [0.472] 
     
Baseline mortality rate (per 100,000 adults) 39.505 54.447 38.927 37.323 
     

Notes: Estimates based on sample of one Medicaid expansion states and a donor pool of 35 control states including the District of 
Columbia and observations 13 years pre- and 9 years post-expansion.  Demographic (% female, black, white, Hispanic, age cohort) 
and economic (educational attainment, marital status, unemployment rate, poverty rate, logarithm of income, logarithm of Medicaid 
beneficiaries) but omitted from presentation. Pseudo p-values based on permutation tests in brackets. *** p<0.01, ** p<0.05, * p<0.1. 



Table 5: State-Specific Estimates of Medicaid Expansions’ Effect on Healthcare Non-Amenable Adult Mortality Rate 
 (1) (2) (3) (4) 

Panel A: AZ IL ME MI 
Difference-in-differences -6.948 -40.28*** 14.33** 9.822 
 (6.402) (6.580) (6.580) (6.920) 
     
Synthetic control method -8.233 -9.835* 17.579 0.507 
 [0.222] [0.083] [0.306] [0.889] 
     
Baseline mortality rate (per 100,000 adults) 304.67 301.453 275.696 301.141 
     
 (5) (6) (7) (8) 
Panel B: NM NY OR VT 
Difference-in-differences 34.78*** -85.84*** 7.081 -0.505 
 (7.055) (6.402) (4.912) (5.317) 
     
Synthetic control method 8.102 -20.630 9.814 -6.971 
 [0.500] [0.788] [0.556] [0.972] 
     
Baseline mortality rate (per 100,000 adults) 311.213 327.667 297.747 275.893 
     

Notes: Estimates based on sample of one Medicaid expansion states and a donor pool of 35 control states including the District of 
Columbia and observations 13 years pre- and 9 years post-expansion.  Demographic (% female, black, white, Hispanic, age cohort) 
and economic (educational attainment, marital status, unemployment rate, poverty rate, logarithm of income, logarithm of Medicaid 
beneficiaries) but omitted from presentation. Pseudo p-values based on permutation tests in brackets. *** p<0.01, ** p<0.05, * p<0.1. 



Table 6: State-Specific Estimates of Medicaid Expansions’ Effect on HIV Adult Mortality Rate 
 (1) (2) (3) (4) 

Panel A: AZ IL ME MI 
Difference-in-differences 2.032 1.442 - 4.461** 
 (2.221) (2.158)  (2.140) 
     
Synthetic control method -0.544 -0.391 - -0.314 
 [0.428] [0.464]  [0.536] 
     
Baseline mortality rate (per 100,000 adults) 10.904 12.198 - 7.386 
     
 (5) (6) (7) (8) 
Panel B: NM NY OR VT 
Difference-in-differences 4.341* -22.60*** -0.370 - 
 (2.160) (2.221) (1.363)  
     
Synthetic control method 0.183 -3.961 -1.621 - 
 [0.643] [0.321] [0.250]  
     
Baseline mortality rate (per 100,000 adults) 6.717 43.4 9.561 - 

Notes: Estimates based on sample of one Medicaid expansion states and a donor pool of 27 control states including the District of 
Columbia and observations 13 years pre- and 9 years post-expansion. Eight states were excluded due to missing values for HIV 
mortality in certain years, due to the confidentiality protocol of the Compressed Mortality Files, including expansion states ME and 
VT. OR analysis only includes 7 pre-expansion years as HIV outcomes available only after 1987 and OR expansion took place in 
1994. Demographic (% female, black, white, Hispanic, age cohort) and economic (educational attainment, marital status, 
unemployment rate, poverty rate, logarithm of income, logarithm of Medicaid beneficiaries) but omitted from presentation. Pseudo p-
values based on permutation tests in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 1: Generalized Synthetic Control Method Mortality Rate Trends in Treated and Synthetic States 
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Figure 2: Generalized Synthetic Control Method Medicaid Expansions Effect on Mortality in Treated States
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