Skip to main content
Log in

Imaging doxorubicin and polymer-drug conjugates of doxorubicin-induced cardiotoxicity with bispecific anti-myosin-anti-DTPA antibody and Tc-99m-labeled polymers

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Radiolabeled anti-myosin imaging is well-established for imaging doxorubicin-induced cardiotoxicity. However, to enable imaging of drug-induced cardiotoxicity in small experimental animals, pretargeting with bispecific anti-myosin-anti-DTPA-Fab-Fab’ and targeting with high-specific radioactivity Tc-99m-DTPA-succinylated-polylysine (DSPL) was developed.

Methods

Mice were injected biweekly with 10 mg/kg Dox or its equivalent as D-Dox-PGA. Tc-99m-DSPL myocardial activity after pretargeting with bsAb-Fab-Fab’ was determined after gamma imaging performed at day 7 for Dox-treated mice and day 39 for all others.

Results

Mice treated with 10 mg/kg Dox lost 10% total body weight in 1 week and 20% after a second dose. Pretargeted mice treated with 30 mg/kg cumulative D-Dox-PGA dose showed no loss of body weight for the duration of the study. Cardiotoxicity was confirmed by gamma imaging and scintillation counting (1.9 ± 0.25 [mean% ID/g ± SD]) after 1 dose of Dox. Mice injected with 3 × 10 mg/kg Dox equivalent as D-Dox-PGA (0.4 ± 0.04, P < .01) and untreated 2 control groups (0.20 ± 0.05 and 0.19 ± 0.04, P < .01) showed significantly lower myocardial anti-myosin radioactivity relative to the 10 mg/kg Dox group.

Conclusion

Pretargeting with bsAb-Fab-Fab’ and targeting with Tc-99m labeled high-specific activity polymers enabled early visualization of doxorubicin induce cardiotoxicity in mice. Tolerated dose of D-Dox-PGA was greater than to 30 mg/kg Dox-equivalent dose with minimal cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

Dox:

Doxorubicin

DTPA:

Diethylene triamine penta acetic acid

PGA:

Polyglutamic acid

DSPL:

DTPA-modified succinylated polylysine

D-Dox:

DTPA and doxorubicin-conjugated

FITC:

Fluorescein isothiocyanate

MTD:

Maximum tolerated dose

MAb:

Monoclonal antibody

bsAb:

Bispecific antibody

TNBS:

Trinitrobenzene sulfonic acid

References

  1. Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 1967;20:333-53.

    Article  CAS  PubMed  Google Scholar 

  2. Hale JP, Lewis IJ. Anthracyclines; cardiotoxicity and its prevention. Arch Dis Child 1994;71:457-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mallison J, Sister W, Hey H. Cardiotoxicity associated with doxorubicin. Cancer Nurs Pract 2003;2:30-4.

    Article  Google Scholar 

  4. Von Hoff DD, Rozencweig M, Piccart M. The cardiotoxicity of anticancer agents. Semin Oncol 1982;9:23-33.

    Google Scholar 

  5. Shan K, Michael LA, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med 1996;125:47-58.

    Article  CAS  PubMed  Google Scholar 

  6. Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 1983;43:460-72.

    CAS  PubMed  Google Scholar 

  7. Ichikawa Y, Ghanefar M, Bayeva M, WuR Khechaduri K, Prasad SVN, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 2014;124:617-30.

    Article  CAS  PubMed  Google Scholar 

  8. Hasinoff BB, Herman EH. Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc Toxicol 2007;2:140-4.

    Article  CAS  Google Scholar 

  9. Swain SM, Vici P. The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review. J Cancer Res Clin Oncol 2004;130:1-7.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 2012;18:1639-42.

    Article  CAS  PubMed  Google Scholar 

  11. Bellingham M, Bristow M. Evaluation of anthracycline cardiotoxicity: predictive ability and functional correlation of endomyocardial biopsy. Cancer Treat Symp 1984;3:71-6.

    Google Scholar 

  12. Vejpongsa P, Yeh ETH. Prevention of anthracycline-induced cardiotoxicity. J Am Col Cardiol 2014;64:938-45.

    Article  CAS  Google Scholar 

  13. Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 2013;20:443-64.

    Article  Google Scholar 

  14. Florescu M, Cinteza M, Vinereanu D. Chemotherapy-induced cardiotoxicity. Maeduca J Clin Med 2013;8:59-67.

    Google Scholar 

  15. Bennink RJ, van den Hoff MJ, van Hemert FJ, de Brun KM, Spijkereboer AL, van den Vanderheyden J, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 2004;45:842-8.

    CAS  PubMed  Google Scholar 

  16. Estorch M, Carrio I, Berna L, Mertinez-Duncker C, Alonso C, Germa JR, et al. Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med 1990;31:1965-9.

    CAS  PubMed  Google Scholar 

  17. Carrio I, Lopez-Pousa A, Estorch M, Duncker C, Berna L, Torres G, et al. Detection of doxorubicin cardiotoxicity in patients with sarcomas by indium-111-antimyosin monoclonal antibody studies. J Nucl Med 1993;34:1503-7.

    CAS  PubMed  Google Scholar 

  18. Valdés Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF, Van Tinteren H, Bruning PF, Van Vlies B, et al. Usefulness of indium-111 antimyosin scintigraphy in confirming myocardial injury in patients with anthracycline-associated left ventricular dysfunction. Ann Oncol 1994;5:617-22.

    Article  PubMed  Google Scholar 

  19. Yasuda T, Palacios IF, Dec WG, Fallon JT, Gold H, Leinbach RC, et al. Indium 111-monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. Circulation 1978;76:306-11.

    Article  Google Scholar 

  20. Carrio I, Berna L, Ballester M, Estorch M, Obrador D, Cladellas M, et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection. J Nucl Med 1988;29:1893-900.

    CAS  PubMed  Google Scholar 

  21. Peker C, Sarda-Mantel L, Loiseau P, Rouzet F, Nazneen L, Martet G, et al. Imaging apoptosis with Tc-99m-annexin-V in experiment subacute myocarditis. J Nucl Med 2004;5:1081-6.

    Google Scholar 

  22. Kopecek J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv 2013;65:49-59.

    Article  CAS  Google Scholar 

  23. Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008;60:886-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khaw BA, Tekabe Y, Johnson LL. Imaging experimental atherosclerotic lesions in ApoE knockout mice: enhanced targeting with Z2D3-anti-DTPA BISPECIfiC ANTIBODY and 99m Tc-labeled negatively charged polymers. J Nucl Med 2006;47:868-76.

    CAS  PubMed  Google Scholar 

  25. Gada K, Patil V, Panwar P, Majewski S, Tekabe Y, Khaw BA. Pretargeted gamma imaging of murine metastatic melanoma lung lesions with bispecific antibody and radiolabeled polymer drug conjugates. Nucl Med Commun 2011;32:1231-40.

    Article  CAS  PubMed  Google Scholar 

  26. Khaw BA, Petrov A, Narula J. Complementary roles of antibody affinity and specificity for in vivo diagnostic cardiovascular targeting: How specific is antimyosin for irreversible myocardial damage? J Nucl Cardiol 1999;6:316-23.

    Article  CAS  PubMed  Google Scholar 

  27. Habeeb AF. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem 1966;14:328-36.

    Article  CAS  PubMed  Google Scholar 

  28. Khaw BA, Gold HK, Yasuda T, Leinbach RC, Kanke M, Fallon JT, et al. Scintigraphic quantification of myocardial necrosis in patients after intravenous injection of myosin specific antibody. Circulation 1986;74:501-8.

    Article  CAS  PubMed  Google Scholar 

  29. Patil V, Gada K, Panwar R, Varvarigou A, Majewski S, Weisenberger A, et al. Imaging small human prostate cancer xenografts after pretargeting with bispecific bombesin-antibody complexes and targeting with high specific radioactivity labeled polymer-drug-conjugates. EJNMMI 2012;39:824-39.

    CAS  Google Scholar 

  30. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 2005;16:1282-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khaw BA, Gada KS, Patil V, Panwar R, Mandapati S, Hatefi A, et al. Bispecific antibody complex pre-targeting and targeted delivery of polymer-drug-conjugates for imaging and therapy in dual-human mammary cancer xenografts. EJNMMI. 2014;41:1603. https://doi.org/10.1007/s00259-014-2738-2.

    Article  CAS  Google Scholar 

  32. Gada KS, Patil V, Panwar R, Hatefi A, Khaw BA. Bispecific antibody complex pretargeted delivery of polymer-drug-conjugates for cancer. Drug Deliv Trans Res 2012;2:65-76.

    Article  CAS  Google Scholar 

  33. Patil V, Gada K, Panwar R, Majewski S, Tekabe Y, Varvarigou A, et al. In vitro demonstration of enhanced prostate cancer toxicity: pretargeting with bombesin bispecific complexes and targeting with polymer-drug-conjugates. J Drug Target 2013;21:1012-21.

    Article  CAS  PubMed  Google Scholar 

  34. Arnold RD, Slack JE, Straubinger RM. Quantification of Doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B 2004;808:141-52.

    Article  CAS  Google Scholar 

  35. Hammond W, Tekabe Y, Johnson L, Majewski S, Popov V, Kross B, et al. Development of high performance mini gamma cameras based on LaBr3scintillator and H8500 and H9500 PSPMTs and their use in small animal studies. Medical Imaging Conference. 2006.

  36. Bhattarai P, Vance D, Hetafi A, Khaw BA. An in vitro demonstration of overcoming drug resistance in SKOV3 TR and MCF7 ADR with targeted delivery of polymer pro-drug conjugates. J Drug Target 2017;25:436-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singal P, Iliskovic N, Li T, Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 1997;11:931-6.

    Article  CAS  PubMed  Google Scholar 

  38. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology 2010;115:155-62.

    Article  CAS  Google Scholar 

  39. Granger CB. Prediction and prevention of chemotherapy-induced cardiomyopathy: can it be done? Circulation 2006;114:2432-3.

    Article  PubMed  Google Scholar 

  40. Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol 2010;28:1276-81.

    Article  PubMed  Google Scholar 

  41. Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol 2007;18:1159-64.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan Y, Orlow SJ, Curtin J, Downey A, Muggia F. Pegylated liposomal doxorubicin (PLD): enhanced skin toxicity in areas of vitiligo. Case report. Ecancermedicalscience. 2008;2:111.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Levine AM, Tulpule A, Espina B, Sherrod A, Boswell WD, Lieberman RD, et al. Liposome encapsulated doxorubicin in combination with standard agents cyclophosphamide, vincristine, prednisone) in patients with newly diagnosed AIDS-related non-Hodgkin’s lymphoma: results of therapy and correlates of response. J Clin Oncol 2004;22:2662-70.

    Article  CAS  PubMed  Google Scholar 

  44. U.S. Food and Drug Administration. Drug Safety and Availability. FDA statement on dexrazoxane. July 20, 2011. http://www.fda.gov/Drugs/DrugSafety/ucm263729.htm.

  45. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin treated children with acute lymphoblastic leukemia. N Engl J Med 2004;351:145-53.

    Article  CAS  PubMed  Google Scholar 

  46. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Oncol 1997;15:1318-32.

    Article  CAS  Google Scholar 

  47. Cai C, Lothstein L, Morrison RR, Hofmann PA. Protection from doxorubicin-induced cardiomyopathy using the modified anthracycline N-benzyladriamycin 14-valerate (AD 198). J Pharmacol Exp Ther 2010;335:223-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall TS, Baumgartner WA, Borkon AM, LaFrance ND, Traill TA, Norris S, et al. Diagnosis of acute cardiac rejection with antimyosin monoclonal antibody, phosphorous nuclear magnetic resonance imaging, two-dimensional echocardiography, and endocardial biopsy. J Heart Transplant 1986;5:419-24.

    CAS  PubMed  Google Scholar 

  49. Vora J, Khaw BA, Narula J, Boroujerdi M. Protective effect of butylated hydroxyanisole on Adriamycin induced cardiotoxicity. J Pharm Pharmacol 1996;48:940-4.

    Article  CAS  PubMed  Google Scholar 

  50. Hiroe M, Otha Y, Fujita N, Nagata M, Toyozaki T, Kusakabe K, Sekiguchi M, Marumo F. Myocardial uptake of 111In monoclonal antimyosin Fab in detecting doxorubicin cardiotoxicity in rats. Circulation 1992;86:1965-72.

    Article  CAS  PubMed  Google Scholar 

  51. Su H, Gorodny N, Gomez LP, Gangadharmath U, Mu F, Chen G, Walsh JC, Szardenings K, Kolb HC, Tamarappoo B. Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging. 2015;8:e001952. https://doi.org/10.1161/circimaging.114.001952.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Van Decker WA. Imaging and chemotherapy cardiotoxicity: a long-playing story still seeking precision and improved outcome/management data. J Nucl Cardiol 2016;23:98-100.

    Article  PubMed  Google Scholar 

  53. Narula J, Strauss HW, Khaw BA. Antimyosin positivity in doxorubicin cardiotoxicity: earlier than the conventional evidence. J Nucl Med 1993;34:1507-9.

    CAS  PubMed  Google Scholar 

  54. de Geus-Oei LF, Mavinkurve-Giroothuis AMC, Bellersen L, Gotthardt M, Oyen WJG, Kapusta L, van Laarhoven HWM. Scintigraphic techniques for early detection of cancer-induced cardiotoxicity. J Nucl Med 2011;52:560-71.

    PubMed  Google Scholar 

Download references

Acknowledgements

The prototype gamma camera was provided by Andrew Weisenberger from the Jefferson National Acclerator Faciities.

Disclosure

B.A. Khaw is a co-founder of Akrivis Technologies LLC. There is no conflict of interest with regards to the work of this research for any of the authors (Rajiv Panwar, Prashant Bhattarai, Vishwesh Patil, Keyur Gada, Stan Majewski, and Ban An Khaw).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban An Khaw PhD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

This work was supported by an unrestricted grant of the corresponding author from Gwathmey Inc., LLC, Cambridge, MA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (PPTX 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, R., Bhattarai, P., Patil, V. et al. Imaging doxorubicin and polymer-drug conjugates of doxorubicin-induced cardiotoxicity with bispecific anti-myosin-anti-DTPA antibody and Tc-99m-labeled polymers. J. Nucl. Cardiol. 26, 1327–1344 (2019). https://doi.org/10.1007/s12350-018-1190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1190-2

Keywords

Navigation